Irfan, M and Dalai, S and Kishore, K and Singh, S and Akbar, SA
(2020)
Vision-based Guidance and Navigation for Autonomous MAV in Indoor Environment.
In: 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT-2020), July 1-3, 2020, IIT Kharagpur, India.
Abstract
The paper presents an autonomous vision-based guidance and mapping algorithm for navigation of drones in a GPS-denied environment. We propose a novel algorithm that
accurately uses OpenCV ArUco markers as a reference for path detection and guidance using a stereo camera. It enables the drone to navigate and map an environment using vision-based path planning. Special attention has been given towards the robustness of guidance and controlling strategy, accuracy in the vehicle pose estimation and real-time operation. The proposed algorithm is evaluated in a 3D simulated environment using ROS and Gazebo. The results have been presented for drone navigation in a maze pattern indoor scenario. Evaluation of the given guidance system in the simulated environment suggests that the proposed system can be used for generating a 2D/3D occupancy grid map autonomously without the use of high-level algorithms and expensive sensors such as lidars.
Actions (login required)
|
View Item |