Zynq SoC Based High Speed Data Transfer Using
PCle: A Device Driver Based Approach

Pramod Kumar Tanwar'. Om Prakash Thakur', Kritik
Bhimani’, Gaurav Purohit’, Vipin Kumar', Sanjay
Singh', Kota Solomon Raju'

'Cyber Physical Systems, CSIR-CEERI, Pilani. India
*BITS-Pilani, Goa Campus, Goa, India

Abstract— High Speed Data Transfers is"a typical requirement
of data intensive applications like image and video processing.
Speed efficiency can be ensured by handling the data transfers at
both Hardware and Software level. A complete system has been
developed by implementing the hardware architecture on FPGA
and writing corresponding Software device driver to perform the
speedy data transfers from endpoint to a root complex device
using PCle interface. This paper describes the approach to design
and verify this system. The speed of data trausfer achieved
practically for PCle (2.0) x4 is 4Gib/s. The developed hardware
architecture is resource constrained and low power. The hardware
is implemented on Xilinx Zynq device. This work has a good
potential in the field of image and video processing and can be
used to perform large data transfer operations at high speed.

Keywords— PCle, Zyng, XMD, High Speed, DMA

[. INTRODUCTION

Image and video processing has revolutionized the world
with its high performance digital cameras having flexible
interface to achieve high throughput. The camera captured
images are put to hardware accelerators to perform filtering.
processing and displaying operations. There are huge nunber
of computations performed on the captured images using FPGA
boards. FPGA devices are used to create reconligurable
hardware architectures to perform the above said operations at
high speed. After applying the image and video processing
algorithms on the captured images, these images arc sent to
Central Processing Unit (CPU) for displaying and further
processing. In this paper, a hardware architecture is developed
in Xilinx Vivado using IPs to send the processed images data
from the FPGA board to CPU with very low latency. Peripheral
Component Interconnect Express (PCle) is used here as the
high speed serial interface to create the communication link
between FPGA board and the CPU. To create and manage the
PCle interface, a software device driver is writien on Linux
Ubuntu OS which performs the dara transfer operations
smoothly and speedily [1].

For a typical high speed vision requirement, frames arc
captured at more than 250 frames/sec, pre-processed and sent
to CPU for further processing and usage. A high speed frame
grabber which captures image at more than 230 frames/sec¢ with
resolution of (512*512 pixels). needs a high speed (Gib's)

[daku Ishii. Sushil Raut
Department of System Cybernetics
Hiroshima University
Hiroshima. Japan

interface through which the data could be sent 1o the host
system for further processing. In order to fulfill the high
throughput need of high-speed digital data processing and to
achieve high-speed communication between digital front-ends
and computer, PCle is the best suitable interface now a days
[2]. This interface has a number of versions and fanes which
could be used as per the application i
PCle (2.0) x4 is used to analvze the cap: A
this interface. The developed hardware architecture is having
Zynq SoC. which has abundant logic cells and dual hard core
ARM Cortex A9 processors 1o make the complex decisions
based on the arrived data from the peripherais like high speed
camera. The Zynq SoC is also having the Programmable Logic
(FPGA) and is capable in processing large data, applying
massively parallel algorithms and performing speedy
computations. Fig. 1 describes the interaction between PCle
endpoint and root complex CPU. Xilinx ZC706 board having
Zyng-7000 all programmable SoC (Z-7043) 15 used as a PCle
endpoint.

i In this paper.

yvand ethcency ol

EORT S S STy PP
ZC708
FCle s
endpoint DL
Diata
O S T SO AT
T fram PCle
P.C'e slof endpoint
PCle root ie root
Gt : CPU Motherboard ccnpp{lpx
' DDR .
Linux
Workstation
I User
Fig 1 Introduction to endpomt initiated daa transicr thireugh PO
70706 has PCle (2.0) x4 interface. 1 GI3 DDR3 dor

processing systems (PS) and another 1 GBI for Programmable
Logic (P1.). The hardware design is made using reconh curable

hardware available in the PL part of this board. The developed
hardware creates an interface between the endpoint and root
complex CPU. To manage the data transfer operation. a
software device driver is written on Linux core which could be
run in online mode. The implemented software driver can work
on all the Zyng SoC boards by modifying the configurations

[3]-

In the remaining sections of this paper, hardware design and
software driver development are discussed. The developed
hardware and software are put on the FPGA board and CPU. it
performis the required data transfer operation and verifies the
data bufters.

IEHARDWARE DESIGN DEVELOPMENT

Hardware design is realized using Xilinx Vivado tool and
implemented on Xilinx Zvng-7000 SoC. The main 1Ps which
are used in this project are: 1. AXI CDMA, 2. AXI memory
mapped to PCL express, 3. Zyng-7000 processing svstem. 4.
AXT BRAM generator. S, Block memory generator. Other
small IPs like binary counter, AXI interconnect, processing
system resel. clock buffers and other glue logic IPs are also
used in this design. The goal is to transfer data packets from
ZC706 board DDR3 memory to Intel-i7 CPU using PCle bus.
PCle is more like a network where different endpoints are
connected o a switch or bridge and the switch or bridge is
connected 1o root complex using dedicated paths. In the
presented work. endpoint is directly connected to the root
complex device. The endpoint which initiates the transaction is
called requester and the responder is called completer, Here. the
207706 Board is configured as endpoint and the CPU board is
functional as oot complex. When the PCle device is connected
te UPL then the configuration address spaces are filled. The
PULe dovice has three PCIEBARs (base address register) but
only one 1s required here. which is used by the CPU to
communicate with the 7ZC706 FPGA board. The source and
destination addresses are of different bits (32 bits in ZC706
DDR and 64 bits in Intel-i7 CPU address space). It is necessary
to use an address translator e AXI] memory mapped to PCI
express block, o store the translation vectors, one Block
Memory (ERAM) is needed and the controller of this memory
is AXI BRAM controller [4]. Vivado 2015.1 is used to create
the Zyng based hardware architecture.

Zyng processing syslem is required to execute the
instructions, DDR controller sends the data buffers from Zyng
DDR 10 CPU DDR. CDMA block manages data transfer and
CPU usage. The remaining blocks like Processor system reset,
counter. AXI Interconnect ete. are supporting [P blocks which
are used to generate clocks, resets and interconnections
between 1P blocks. Some logical gates are also used to bring
down the frequency of reference signals to act as debug
monitors o check the proper working of the developed design
on the hardware board. An implemented design has a low
visibility 10 be looked into for debugging. A designer has to
connect a J1AG debugeer and uses Chipscope or other similar
tn Circuit Debugger (ICD) to dwell into the FPGA design once
itis configured. We have used an old-school technique of LEDs

is used to check the clocks and basic handshaking. Some user |
LEDs on the board are attached to show the clock and link up.
Link up is the basic step towards the handshaking of PCle
interface. The block diagram in Fig. 2 shows the main [Ps used
to perform data transfer operations speedily. The Zyng-7000
processing system, AXI CDMA and AXI PCle IPs configures
cach other. The Block memory generator IP is accessed by
Zyng, AXI PCle and AXI CDMA IPs to eet the translated
addresses during transfer operations. The DDR is interfaced
with Zvng-7000 and data are accessed from it through its slave
ports. The accessed data are put on the PCle link after encoding
and parallel to serial conversion. The PCle link transfers the
data on the CPU side and after serial to parallel conversion and
decoding, the data buffers are received and displayed on the
CPLL

Data is transferred in the form of standard packets. A data
transfer packet consists of overheads which decreases the
cificiency of transfer but increases the reliability. The data
transfer packet looks like as shown in Fig. 3 [5]. PCle protocol
ensures the transter of data payload from one device to other
reliably,

Block memory

Generator
| AXI BRAM AX] BRAM
controller controller
il i L AX Co A
system |"-terCO-"_l‘-5301 o AXICOMA - Irltercc_mnect
AX| . AXIT Memory
~Interconnect mapped to PCI
Interface i Express

Fig, 2 Hardware desion o transfer data from Zyng DDR o CPLDDR

For large data transfers, the whole data is divided into
packets and sent in sequence. the error cyclic redundancy check
(ECRC) and linear CRC are appended to the packet in
transaction and data link layers. In the physical layer, start and
stop bits are added and then 8/10b encoding is done. Data is
sent bit by bit after conversion from parallel to serial [6].

- grannzen _|

! Information comes from software layer / device core

P, 4

il c .
. | Data
Header | Payload

| ECRC | LCRC | END | |

il 1 i L —

| Start | Sequence |

Crealed by Transaction Layer

*Appended by Data Link Layer |

A_;)pe_:‘ued by Physical Layer

g, 3 Data Iranster packet

L

This hardware architectural design is then synthesized and
bitstream file is generated. which is dumped to the ZC706
board. This design is now ready to create the detection link and
initializing the interfaces which are necessary for data transfers.
CPU should be able to detect the ZC706 board. The detection
of ZC706 board indicates that this is ready to perform the data
transfer operation. User LEDs as discussed above in this section
indicates the clock and PCle Link establishment with the CPLU.
To perform the required transfer, a software device driver is
developed and inserted with Linux Ubuntu OS as explained in
the next section.

111 SOFTWARE DEVICE DRIVER DEVELOPMENT

Device driver is a software program file which runs on a
specific hardware target. It acts as, an interface belween
firmware and host operating system. As we go from Industry

Standard Architecture (ISA) bus to PCle bus, the complexity of

software program increases. PCle driver is loosely based on
PCI driver approach only. It makes use of the same library and
header file structure as used in PCI. Only the addresses and
Transaction Layer Packet (TLP) size arc different than PCI.
Writing device drivers is more like copving and applying the
functions based on our application. But, it’s not trivial. So. the
main focus should be on understanding the header files and
functions and knowing how to use and where to use these. In
computers. a lot of processes run concurrently and do diflerent
tasks. Each process asks for different resources like computing
power, memory, network connectivity. registers and other
resources. The kerel is the fundamental and most important
part of OS which manages all the requests made by different
tasks. The kernel's role can be splil into these: Process
management, Memory management, Filesystems management,
Device controls and Networking [7]|. When any system call is
occurred then the calls are sent to specific area to get managed.
The kernel subsystems manage every call which are made by
user space application programs. When the hardware devices
are attached to peripheral ports then it gets detected by using
device drivers and its configuration addresses and mount
addresses are updated to specific proc files. Hardware is
accessed using features like Virtual File Systems (VES). Talk
To You (TTYs). When the specific system calls arc made, the
kernel subsystems access the hardware devices and perform the
desired tasks.

Linux OS is chosen to write the PCle device driver. because
of its open source nature and availability of community support,
which is very helpful for achieving such an objective. Another
advantage is that the device driver modules can be added to the
kernel during runtime in Linux systems, which is not a casc in
MS Windows. In windows. the svstem needs 1o be rebooted
after adding any driver modules. The driver modules are added
and removed by using insmod and rmmod commands
respectively. A char driver is written which can perform the
burst mode Direct Memory Access (DMA) transfer in scatter
gather mapping. The driver is written for kernel space and user
space separately.

A. Kernel Space Driver Writing

Kernel space driver is OS specific. [t is created 10 make a
suitable environment for the user space applications to be
exccuted. It sets file attributes and manages file svstem
operations. In case of PCle kernel space driver. it initializes,
probes and removes PCle device. There are a number of header
files available to be used to write driver according to our task
requirements in Jusr/include and Juseinclude i section of
the OS files. The basic header files for char drivers are:
kernel h, module h and init.h. Another header file peih is added
for PCle char driver. Except these, kobject. /r is used to build the
hierarchy seen in Jsvs. interrupeh 1o request and handle
interrupts, siring i 1o change string to integer. device i 1o use
device id and many more to allocate character de
device 1 also enables and disables pei. For file operations and
signal attributes. fsh and signal h files are used. There is no
main() function in kernel space. The functions arc called only
when any device is interfaced. The kernel space driver do the
following tasks: 1. Gives major and minor number. 2. Sets file
system attributes, 3. Manages device file systems opening,
closing and memory mapping. 4. PCle device probing, 5
Handles interrupts, 6. Sets DMA masking and coherent
mapping, etc. This kernel space driver file is compiled with
Linux kernel and it produces ko (kernel object) file. Kernel
object file is inserted first as a driver module which creates an
environment for user space programs 1o execute. The user space
driver file makes interface with the kernel mo
hardware peripheral device to transfer required data from
source address to destination using DMA in burst mode [8].
We have used Ubuntu 16.04. kernel version 4.6 to implement
PCle driver.

ce regions.

e and use the

b. User Space Driver Writing

User space device driver contains the custom logic to
transfer data from source to destination, handles interrupts and
performs data translation operation. As the endpoint board
£CT706 1s attached to the CPLUL the functions from kernel object
modules are called; and virtual files are created in e and us
directories which contains configuration addresses and memory
mapped addresses of different PCIEBARs and AXIBARs, The
user space program handles the data transter operations usig
the offset addresses [4]. The Base Address Register (BAR)
mapped in memory or I/O space is used to contrel registers and
this is the address used by any root complex or CPU to
communicate with the endpoint device. The driver allocates
buffers in DDR memory and the address of these butters are
written in control registers. The driver accesses the control
registers and performs read and write operanions from the buffer
via DMAL The. DMA block makes an interrupt when the tasks
get completed [4], The kernel space pro
ditferent PCle hardware designs because it uses seneral
tunctions which are called. as and when the device gets attached
to CPU. It registers and unregisters the driver. The device name
and id are filled in PCI table. BAR is mapped in memory or /0
space and driver allocates buffer in DDR. The kernel object (ko
file) has been created based on the value ol kernel object
attribute (read, write and other permissions of kernel object
file). In this way, the correct kernel variable is filled into buffer

pinav also work tor

and then updated. These buffers are written in control registers
and accessed by DMA. Based on the device major and minor
number. PCle device is probed. The memory mapped addresses
are given Lo buffers allocated previously and DMA masking is
done. Masking is a process of acknowledging the kernel that
our systent is capable of "N bit DMA transfer, It can be noted
here that not all the CPUs are configured of using full DMA
transfer. S0. as a practice 1t is recommended to query the DMA
masking and coherent mapping. At the same, PCle devices are
capable olusing 64 bit DMA addressing in 64 bit CPUs. Citing
from the code. a signal named siginfo is used to store and
transfer the intormation of signals to user space. This signal is
used in user space after data transfer completion to indicate that
an interrupt has been received by user space. After successfully
transferring the data from endpoint to root complex using DMA
in burst mode with scalter gather mappinmg, the PCle driver is
removed and buffers are unmapped. The character device
region is also unregistered and at last PCle is removed by
running the command rimmmod [7]. [8].

V. DATA TRANSFER OPERATION IN DETAIL

A number ol descriptors are created and DMA is used in
burst mode with scatter gather mapping to perform the data
transter operation. The descriptors contain the next descriptor
address to continue the chain of exceution and it has also the
source address. destination address and data bytes value to be
transferred. A sample of a descriptor is shown in Table 1 [4].

PAdiE [A SAMPLE DESCRIPTOR
Store Nexl o '
o I s Source Destination Data bytes
descriptor at - descriptor Adoreds address gl
this address address

These descriptors are created in application layer of PCle
devices. As per the maximum payload size of the peripheral
PCle and host PCle devices, the data packets are formed in the
subsequent three layers (as described above in Fig. 3) and then
the data are transferred bit by bit following the serial transfer
protocols of PCle devices. Descriptors are of two types: 1.
Address rranslation deseriptor, 2. Data transfer descriptor. The
translation descriptor increases the address offsets according o
the size of wtransfer after every data transfer descriptor
execution. It alse changes the destination address and is
appropriatelr set betore the execution of data transfer
descriptor. Ihe target data transfer descriptor takes data from
source address and throws it to the destination address. The
destination address is changed by the AXI memory mapped
PCle as shown in Fig, 4,

: PClzBARD Dastinaticn
Destinahan Wnte Addr
s A Address (x41000020
DRFFO0OGE0 Channel
Axl 3 -
CPU Memory ool A% Bemary
Address Space p:;;-) Oe[z Address
G-t P élpe $ Space
¥ L 32-it
Wite Destination
PCle Root Camplex TLe PCleEndpoint — aq. rite
Destination Addr Oxa000a0g Address
CXDO0GA0D4AACENDID AXIBARZPCI2BARO Channel

Fra. 4 Address translaton from 32-bit 1o 64-bit

I'he AXI memory mapped PCle block translates the 32-bit
address to 04-bit and vice-versa. Fig. 4 is an example of address
translation. The actual translation differs from it. A group of
descriptors are executed in DMA burst mode with scatter gather
mapping until the required data is transferred. The transferred
data is accessed using AXIBARs and the data buffers addresses
are printed on terminal [4].

V.RESULTS

We have developed the hardware architecture design in
Vivado and PCle device driver software. First of all, the Xilinx
ZC7T00 board is inserted to the PCle slot of Intel-17 5960x CPU.
When the board is inserted to the PCle slot, it is not getting
detected by CPU. The developed hardware design is dumped to
the ZC706 board through JTAG master booting mode. This
dumped design configures the FPGA, Zynq PS and initializes
the interfaces. Fig. 5 shows the assembled hardware.

S Hardware assembly
The LEDs glow as the PCle linkups. The PCle device is
scarched using /spei on Linux OS terminal and it shows that a
new PCle device has been detected.

The designed hardware architecture in Vivado requires very
less percentage of available resources like Flip-flops. LUTs.
Global buffers and transceivers efe. as described in Fig. 6. Onlv
3% of available LUTs, 7% of Flip-Flops. 20% of Transceivers
and 34% of Global buffers have been used. The power
requirements are also very low and the total power consumption
is around 4W,

Utilization - Fo i Power 2
AT 1253 W
3%
Men
S0
% e % D0evce Stanc PRCERT
Estimated Utlization (%) T
summary On-Chip
Graph Table

Post-Synthasis Postimgiememation

Fig. 6 Resource utilization and Power requirements

After PCle endpoint detection by the CPU, the device driver
software is inserted to the kernel. The kernel space driver
creates an environment for the user space applications to be
executed and manages the operations. To perform the data
transfer operation from endpoint to root complex device, the
user space driver software is compiled and run on the terminal.
This initiates the scatter gather DMA operation and transfers
data buffers from ZC706 DDR o CPU DDR through PCle.

As an example, 40MiB data are sent using 10 data transfer
descriptors of 4MiB each and 4 data translation descriptors of
8 Bytes each. Large data can be sent using more number and
different sizes of descriptors. The transfer operation is
performed for different sizes of data using different sizes of
descriptors and a comparison table is prepared as shown below
in Table II. The speed of transfer is calculated using transfer
size and elapsed time during transfer.

AN

TABLE 1L DESCRIPTOR SIZE VS 'R FER SPELD

Stee (KiB)
(Ciihisy
e
- 2560
512
1024
2048 3.96
1096 o0
5120 4.01
6144 4.02
7168 4.03
<8192 4.03

Increase in descriptor size reduces the number of interrupts
to be handled. This increases the speed of data transfer. It
cannot be further increased bevond 8MiB due to a limitation
from Xilinx IP which says 8MiB or more data cannot be sent
using one descriptor [4]. The address translation descriptor is
required after every 8MiB data transfer. Transferred data
buffers are verified by checking at source address and the
destination address using Xilinx Microprocessor Debugger
(XMD) and device driver software respectively,

This implementation proposes an optimal way ol achicving
PCle transfers in an efficient way. Data transfer is validated at
both source and destination. The average speed of ransler has
been experimentally proven as around 4 Gib/s.

VI. DISCUSSIONS

This work has good potential in the field of high speed
image and video processing. It could be used to develop a Zyng
SoC based high speed image frame grabber. where image
processing algorithms can be casily applied at high [rame rate.
It uses less resources and offers low latency interface to transfer
processed data from FPGA board to CPU. We expect Zyng SoC
based futuristic high speed vision frame grabber systems soun
in market, which could give better performance as compared Lo
the available ones. There are major industries like Xilinx,
Altera, Photron. efc.. working on the same (0 achieve faster
response and also trying to get the efficient archilectural

designs to perform the data transfer and algorithmic processing
operations, PCle is leading in the arca of high speed data
transfer application intertaces. Now a days. high speed storage
systems also use PCle interface to transfer and store data
speedily. The developed interface has some limitations:

A. Pavload Size in Data Packets

I'he PCle specification allows payload size up to 4096 byles
per packet. But, the peripheral devices and motherboards don't
support the same. In this paper. PCle gen2 v2.6 [P. Zynq SoC
and Intel-i7 5960x CPU are used. The default payload size in
this case is 256 bytes and it needs to be increased 1o speed up
the transfer rate and efficiencv. This can be done by modifying
the PCle configuration registers of the motherboard and the
HDL configuration of the PCle IP. As per the default payload
size, we get 92% [(256 / (256+20)) * 100} efficient transfer
where 20 bytes are considered as the headers and error
redundancy bytes |9].

B.PL Clock Fregquency

I'he transfer speed dircetly depends upon the PL fabric
clock and it could be conligured up to 250MI 1z in Vivado tool.
However. PCle clock and PL. fabric clock can be increased to
more than 250MHz by using external PLI. (Phase Locked
Loop) circuits [10]. We will try to overcome these limitations
in future.

O Deseriptor Transfer Size

The supported transfer size for a single descriptor is 8MiB.
Xilinx has limited the transfer size ol descriptor to less than
8MiB [4].

In this paper, PCle (2.0) x4 has been used to wranster data
from endpoint to root complex device based on the developed
hardware architecture design implemented on ZC706 board and
created device driver software. This work can be used as an
analogy in developing higher form factor PCle interfaces [4].
DMA technique is used to transfer data from source to
destination at very low latency. The transferred data bufters are
verified using XMD and the device driver software. Data
transfer speed is calculated based on the data bufter transter
size and time elapsed in the transfer operation. The developed
hardware architecture is very simple and uses less resources and
power at the same time.

VII. CONCLUSIONS

The large size data buffers are transferred from Xilinx Zyng
ZC706 (DDR) to Intel-i7 5960x CPU (DDR) through PCI
Express interface. The practical speed of data transfer is around

4Gib/s without using any extra clocking circuits. The speed of

transfer is comparable with the available aliernatives and the
developed system is better in the sense of hardware design
flexibility, software abstraction and resource utilization. Zyng
device is capable of processing and transferring images data at
high speed. The speed of transter can be increased by
overcoming - the hardware
architecture design uses very less hardware resources 1o
transfer data at high speed. The speed of data transfer directly

limitations., However. this

depends on PL fabric clock and CPU clock. The frequencies of

these clocks can be increased by adding external PLL circuits
and SMA contieetors. To achieve the 100 Gibis speed. greater
torm factor and newer version PCle connector can be nsed [11].
I'he device driver is capable 1o work with different Zyng boards
with minor modifications.

This work has a very good scope in high speed object
tracking, stampede surveillance, Robotics vision and in image
frame grabbers. It could also work as a high speed data storage
svstem.

ACKNOWLEDGEMENT

I'his waork has been partially sponsored by Department of
Science & lechnology (DST), New Delhi. India.

REFERENCES

HI B Kavianipe
Based Divia
pp. A5

[2] Idaku Bhe Tets

L5 Muschier and C Bohm. “Hhgh Performance FPGA-

Itertace tor PCle ™ IFEL Trans. Nuel. Sei, vol. 61, no 2.

S 200a

o Tatche, Omeyvt G, Yata Moriue, Takeshs Takaks and

mang Fapma, 2000 1ps Real-ume Vision Svstem with High-frame-rate

Video Recording™ 2010 1ELE Inernational Conference on Roboties and

P336-0341 May, 2010,

s Adevander Sudnison. Valery Sklvarov, Touliia Sklarova,

it Avne

PCLlevpresss a0 case study™. Proceedings of the [8th

ancan Llectrotechnical Conderence MELECON-2016, pp. -4
April. 20104,

[4] PO Fapress Pedpom-DMA - Inthator Subsystem, “XAPPIITL Xiling
Diecument.™ November. 2013

Antomaiion.

31 Argom B

Dot Devices wath general purpose compaters

[5] PO Expross Lanvers. available at
hitpswws venien convpeic primer.hun. Accessed on February 12
L

[l PO Express aopology and link performance, available at

Tips - en wikiped

1 fi

stk PO P press, Acoessed on March 10,20 7

cabs Elaien and Abcssandre Rubon

™

Pldien Peblisher Reilly Media ¢ Trapter- !

i v Dires Rroah Harmmae and Alessandro Rubing, 1 inus,
third Bdison Fubbzher ORelly Media, Chapter-2. 1,
AT

%] Underst certonmance ot POUT Bapress Systems, "WP350 Xalin

Ducumient’ Cielober, 2014

O] Xihins Zvna-7000 AT programmable SoC Technical Reference Manual,
available at
Bl v s cony/suppon/documentation/user guidesiugs83-
Anig-Tins TR i

PEEIM Caseiie, S Chilingaiyan. A Herth, AL Kopmann, U Stevanovie. M.
Vogelgesang, 31 Raiver and M. Weber, “Ulralast slreanung camera

oo scientific applicabions.” IEEE Trans. Nucl, Scivol 60, no

Sopp 6% A6TT O 2003

