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Abstract— This paper presents a comprehensive review on

renewable energy based Electric Vehicle (EV) charging
techniques, energy storage system with grid support

functionality. The classification of Electric Vehicles (EVs) /
Hybrid Electric Vehicles (HEVs) charging based on standards,
and charging techniques have been reviewed. Based on efficiency,
feasibility and reliability, renewable energy systems for Electric
Vehicle (EV) charging are addressed. To enhance the overall
performance of the Electric Vehicles (EVs) / Hybrid Electric
Vehicles (HEVs) for service longevity, the energy storage system
needs to be properly operated and safely maintained. A
qualitative analysis of power electronics topologies along with its
advantages and disadvantages are also discussed. Furthermore, a
comprehensive analysis of Vehicle-Grid-Integration (VGI)
infrastructure its capability, benefits/potential, challenges such as
technological, environmental, economic ete. have also been
highlighted. A comparative overview of power eclectronics
topologies suitable for VGI infrastructure is also exhibited.

Keywords—  Electric Vehicle (EV), Energy Storage System
(E8S), Renewable Energy, Velicle-Grid-Integration (VGI).

[.  INTRODUCTION

In recent years, the electricity network is experiencing a
significant change, motivated by the growing penetration of
renewable energy sources and by the introduction of modern
transport infrastructure. Globally, the Electric Vehicles (EVs)
and Hybrid Electric Vehicles (HEVs) infrastructure are
considered as the most environmental friendly for modern
transportation system [1]. The introduction of EVs and HEVs
in the modern transport infrastructure is mainly due to the
ever-increasing environmental degradation and greenhouse
gas generation. Apart from greenhouse gases, the emissions
from conventional transport vehicles contain pollutants such
as particulate matter, carbon monoxide, and oxides of nitrogen
and Sulphur. The conventional vehicle emits hazardous gases
and contribute a significant percentage in air pollution which
causes several life-threatening illness for human. There is an
urgent need to preserve the ecosystem and to conserve energy
at the same time is becoming a very important issue for the
future. To cater all this, we need better utility grid stability,
increased operational efficiencies as well as better customer
services while dealing with crumbling and ageing clectrical
infrastructure.

The Smart Grid (SG), which is considered as a next
generation power grid, uses bidirectional power flow and

strong communication network to create a globally distributed
and integrated energy distribution network [2]. The smart grid
network will meet the environmental targets and it will also
support all kind of EVS/IIEVs as well as distributed energy
generation with storage capabilities. The increased EV
penetration can have serious impact on the stability of clectric
distribution network. The EVs/HEVs based transportation
network will also provide new opportunity to reduce oil
consumption by drawing on electricity from the utility grid
and renewable energy sources such solar PV, wind energy,
solar thermal, fuel cell etc. The EVS/HEVs can also be used as
energy storage system and supply required energy to the utility
grid at the time of peak demand. With advancement in storage
technology for EVs and HEVs, the concept of Vehicle-to-Grid
(V2G), Vehicle-to Home (V2H), Vehicle-to-Vehicle (V2V)
and Vehicle-to-Load (V2L) infrastructure have also emerged
to support the Smart Grid (SG) environment [3], [4]. The
power flow of EVs and HEVs can be bi-directional if it has
Vcehicle-to-Grid  (V2G)  capability, which can either be
versatile loads (charging mode) or sources of storage
(discharging mode). When the EVs and HEVs power are fed
into the utility/electrical grid, it is called Vehicle-Grid-
Integration (VGI) infrastructure. The concept of VGI and its
implementation have been studied for more than a decade and
is becoming increasingly popular as the percentage of energy
storage system based EVs and HEVs penetration into the
market is increasing day-by-day [5], [6]. Integration of
renewable energy sources such as solar PV with EVs/HEVs
can provide maximum benefits of VGI. Such a development,
however, has several technological, ecnvironmental, and
cconomic barriers, Meeting all these challenges are wvery
important and crucial for the future of renewable energy based
EV charging system with VGI infrastructure [7], [8].

The batteries for EVs and HEVs are valuable resources
that contain electricity and can be used not only to drive the
car, but also to restore energy for the utility grid, minimize
utility bills and power the buildings or homes. The battery
chargers play an essential role in the production of EVs and
HEVs. The charging time and life of the battery are related to
its charger’s characteristics. The battery charger must be
reliable and efficient, with high power capacity, low cost, low
volume and weight. The efficiency of battery modules
depends on its modules construction as well as its discharged
and charged cycle. The battery chargers play a crucial role in
the overall evaluation and growth of the EVs/HEVs
technology [9]. The coordination of supply demand is an
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effective way of achieving high energy efficiency at the
system level while meeting the grid stability and trip
requirement of EVS/HEVs. The overall efficiency of VGI can
be improved by proper coordination between supply available
and demand required from customer [10]. The efficiency,
reliability and stability of the utility grid can be improved by
the use of VGI infrastructure. The VGI operated EVS/HEVs
will also provide reactive power control, active power
management, it also cnables ancillary services such as
spinning reserve, voltage and frequency control. The VGl
infrastructure also create some issues such as battery
degradation and communication problems between EVs/HEVs
and the utility grid [11]-[13].

II. EV CHARGING CLASSIFICATION

Electric Vehicle (EV) charger is an indispensable
component of Electric Vehicles (EVs) and Hybrid Electric
Vehicles (HEVs) infrastructure that deliver electric current for
charging/recharging the EV’s batteries. The EV charging
system is broadly classified as AC based charging system DC
based charging system. The AC charging system and DC
charging system are further sub-divided as per its operation
and working power levels [14]-[16].

A.  AC Charging System

The AC charging system is also called on-board charger;
the charger is built inside the EVs/HEVs. The input AC supply
based on requirements is directly given to the EVs/HEVs.
Further, AC charging system is divided based on following
output power levels [15]:

1) AC Level 1 Charging System: This type of chargers can
be connected to the existing AC outlets in household or offices
(120 V AC, single phase) with output power level of 1.44kW.

2) AC Level 2 Charging System: This type of chargers is
specially designed for EV charging with permanently
connected to the Electric Vehicle Supply Equipment (EVSE).
The nominal supply voltage is 208-240 V AC single phase
with maximum output power of 14.4kW.

3) AC Level 1 Charging System: This type of EV chargers
have wide range of charging capabilities. The output power
level can be more than 14.4kW and it can use single as well as
three phase AC supply as input.

B. DC Charging System

The DC charging system is also called off-board chargers
and placed at some fixed locations. The AC input supply is
converted into DC current inside the charging system before it
is supplied to the EVs/HEVs. Based on SAE standard, the DC
chargers are classified according to its output power level
delivery capabilities to the EV’s battery [15]:

1) DC Level 1 Charging System: The DC level 1 charging
system can deliver maximum output power up to 36kW. It can
supply DC voltages in the range of 200-450 V DC and
maximum output current up to 80A DC.

2) DC Level 2 Charging System: The DC level 2 charging
system can deliver maximum output power up to 90kW. It can
supply DC voltages in the range of 200-450 V DC and
maximum output current up to 200A DC.

3) DC Level 3 Charging System: The DC level 3 charging
system corresponds to power level between O0kW to 240kW.
It can supply DC voltages in the range of 200-600 V DC and
maximum outpul current up to 400A DC.

1.  SOLAR PV BASED EV CHARGING

The concept of solar PV has been used successfully for
decades due to its emergence as sustainable and long-term
solution, curbing carbon footprint, reducing reliance on fossil
fuels and low-maintenance energy solutions [17]. To combat
the global warming, rising energy costs and moving towards
sustainable development, the solar PV based systems have
shown promising results [18], [19]. The environmental and
economic benefits of EVs/HEVs can only be realized when
they are charged through renewable energy sources such as
solar PV based charging systems [20], [21]. The renewable
energy based EVs/HEVs charging system can play significant
role in mitigating carbon footprint and moving towards
sustainable development goals [22]-[24]. Typical architecture
of solar PV based EVs/HEVs charging system with grid
integration is depicted in figure 1.
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Fig. 1. Solar PV based EV charging with grid intcgration

According 1o the recent study conducted by Nation
Renewable [Lnergy Laboratory (NREL), the maximum
EVs/HEVs charging take place in early morning, late
afternoon and evenings, which coincide with the grid’s peak
load demand profile. Consequently, if the EVs/HEVs charging
takes place (or occur) during grid’s peak hours, the EV owner
may be compelled to pay a higher amount for charging
services. Considering rencwable energy sources are
intermittent in nature, the Encrgy Storage Systems (ESS) or
auxiliary energy storage such as battery, flywheel energy
storage, hybrid capacitor, fuel cell etc. are needed for
renewable energy based LVs/HEVs charging system to
provide stable, reliable and consistent charging throughout the
day. The detailed analysis of ESS for renewable energy based
EV charging applications is presented in the subsequent
section,

A typical functional architecture of solar PV based system
consisting solar PV, non-isolated unidirectional DC-DC
converter and Maximum Power Point Tracker (MPPT)
aleorithm is shown in fieure 2. In order to achieve hieh DC
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bus voltage and high power level for EVs/HEVs charging
application, the solar PV modules are arranged in scrics-
parallel configuration. The function of unidirectional DC-DC
converter and MPPT control algorithm are to extract the
maximum power from solar PV and to regulate the output
voltage at the common DC bus voltage. Extensive research
work on solar PV based EVs/HEVs charging and its control
algorithm design are presented [25]-[28].
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Fig. 2. Functional architecture of solar PV system

IV, TororLoGy FOr EV CHARGING SYSTEM

The topology for EV chargers can be classified depending
upon the location of chargers (on-board/ off board), power
ow direction (unidirectional/ bidirectional) and other features
such as vehicle integration type of renewable energy used in
systems [29], [30].

A Unidirectional and Bidirectional Converters

The EV chargers can be broadly classified on power flow
direction as unidirectional charger and bidirectional charger.
While unidirectional topologies are commonly used,
bidirectional topologies are gaining importance duc to its
necessity for Vehicle to Grid Integration functionality. A
typical block diagram of unidirectional-bidirectional converter
representing power flow direction is depicted in figure 3.
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Fig. 3. Unidirectional-bidirectional converter power flow

In unidirectional chargers, the power flow is from the
utility interface to the electric wvehicle battery. These
topologies have advantages of simplicity and robustness as
compared to bidirectional topologies. In [31], a 3.3kW on
board charger consisting of front end PFC and a series
resonant DC-DC converter was proposed for on-board EV
charger. The system used high switching frequency along with
soft switching to achieve both high power density and high
cfficiency. The DCDC converter side topologies include those
based on zero voltage switching and LLC resonant topologies
[32]. An EV charger consisting of interleaved PFC and ZVS
full bridge converter was proposed in [33]. The system had an
overall ¢fficiency of 93.6% at 3.3kW output power. DC-fast
charging systems are unidirectional converters as they are off-
board chargers and benefit of using bidirectional converters is
nnt etomi feant 1207

The bidirectional converters can charge battery from the
clectricity grid as well as can fed battery power into the grid
thereby supporting VGI functionality. Due to cost constraints,
bidirectional converters are typically intended to be used at
level 2 AC power levels. Dual active bridge converter has
been proposed for use in case of isolated bidirectional
converters [34]. Non-isolated bidirectional topologies include
two quadrant buck-boost converter. However, non-isolated
topologies are not typically used due to safety concerns. Other
bidirectional topologies include the use of Matrix converters.
These converters, however, has complex control requirements.

B, Integrated Converter

For optimum utilization of limited space in EVs, the use of
integrated EV chargers have been proposed. The charger filter
inductor windings and motor windings are shared in order to
reduce the overall weight and volume of the system.
Implementation of control algorithm and additional hardware
are the challenge [9], [29]. Schematic diagram of integrated
converter based charger is shown in figure 4.

AC Input Circuit Breaker Electric Motor Bidirectional EV Battery
| - Converter

Fig. 4. Schematic diagram of integrated charger

C. EV Charging Algorithn

A typical functional architecture of EV charging consisting
Energy Storage System (ESS), DC-DC converter with control
algorithm and clectric vehicle to be charged is depicted in
figure 5. In view of the intermitient nature of renewable
energy sources, the energy storage system is used to store the
energy and act as the input to DC-DC converter unit, The DC-
DC converter uses buck-boost, buck or boost converter and its
function is to provide regulated output voltage. The converter
topology can be isolated or non-isolated type.
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Fig. 5. Block diagram ol EV charging

The various charging techniques are available in the literature
for EV charging applications [35], [36]. These are given as:

e  Constant Current (CC) charging

e  Constant Voltage (CV) charging

e Constant Power (CP) charging

s Trickle Current (TC) charging

e Pulse charging

e Negative Pulse (NP) charging

e  Pulsc Frequency Current Control (PFCC) charging

o Taper and Float (T&F) charging
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The CC-CV based EV charging is the most popular
techniques for fast charging and generally employed in most
of the commercially available EV chargers.

V. ENERGY STORAGE SYSTEM (ESS)

Energy Storage System (ESS) is indispensable part of
EVs/HEVs infrastructure. The energy storage industry has
continued to grow, adapt and innovate over the past decades in
order to meet the rising energy requirements. The ESS
transforms electrical energy into some sort of energy that can
be stored and released according to the needs. The ESS
guarantees energy supply stability and boost system efficiency
as well as reliability. Its size and scalability depends on the
form of energy stored. The selection of energy storage for any
particular applications depends on the required power and
energy ratings. There are several approach for classifications
of ESS, however, the most widely adopted approach is based
on the form of energy stored. Energy can be stored in the form
of thermal energy, chemical energy, electrochemical energy,
mechanical energy, electrical energy ete. [37].

Battery is the most widely adopted energy storage system
for EVS/HEVs infrastructure. There are several features one
should consider when choosing the most appropriate battery
for EVs/HEVs applications. The important criteria for the
selection of battery include energy density, reliability, life
cycle, availability, longer life, cost, power density and

compactness [38]. The other important selection parameter of

battery includes State of Charge (SoC), State of Health (SoH)
and State of Power (SoP) [38]. The detailed characteristics and
performances of Energy Storage Systems (ESS) suitable for
EV charging applications are presented in Table I [39]-[41].

VI, VEHICLE-GRID-INTEGRATION

Vehicle-Grid-Integration (VGI) infrastructure provides
exciting possibilities to move towards EVS/HEVs in transport
sector due to its unique characteristics of feeding electricity
back to the uvtility grid. A typical functional diagram of VGI
consisting electric vehicle, DC-DC and DC-AC converter with
control algorithm and utility grid is depicted in figure 6. It
supports renewable energy integration, improves overall
performances  of utility grid, offers reactive power
compensation, load balancing, regulation of active power,
filtering of harmonic components, voltage and frequency
compensation etc. [42], [43]. Three key elements are needed
for proper operation of VGI infrastructure [44], [45]: 1)
Power connection for energy transfer, 2) Logical connection to
asscss availability of electrical capacity in the EVs/HEVs and
3) Recording/auditing the services provided to utility grid.
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Fig. 6. Block diagram of Vehicle-Grid-Integration (VGI)

The electrical capacity of VGI diverges with time based on
type of battery, State-of-Charge (SoC) and State-of-Health
(Sol). For optimal and efficient utilization of VGI electrical
capacity, a real time monitoring of VGI is very essential [4].
For interactive coordination between LV and utility grid,
optimization models such as searching valley scheduling,
variable threshold optimization, variable charging and
discharging rate optimization algorithms are given [46].

VII. CONCLUSION

The extensive details of renewable energy based Electric
Vehicle (EV) charging techniques along with energy storage
system and grid integration is reviewed in this work. Based on
SAL standard, the AC and DC EV charging system are
categorized. EV chargers are classified as on-board and off-
board types with having unidirectional and bidirectional
capabilities. Generally, on-board chargers are low-power and
low-cost chargers. Off-board DC chargers with high power
capabilities are used in fast charging applications. Out of
numerous charging techniques, Constant Current and Constant
Voltage (CC-CV) based charging techniques is suitable for
rapid EV charging. With advancement in rechargeable battery
technology, the Lithium-ion battery is suitable for EV
charging due to its highest energy density, high life cycle, high
power density, safe operation, low self-discharge rate, highest
energy efficiency. It is noted that the true benefits of EV
charging infrastructure can be achieved only when it is
powered by renewable energy sources such as solar PV. The
mnovations and  development in intelligent  charging
techniques can give impetus for further deployment of
renewable energy sources EV charging stations. Further, it can
curb the global greenhouse gas emissions caused by the use of
conventional  transportation vehicles. Various charging
topologies such as unidirectional, bidirectional, integrated
chargers and wireless charging topologies were covered. The
bidirectional EV charging topology allow the injection of
battery power into the utility grid. Galvanic isolation provides
overall safety in electric vehicle infrastructure. The maximum
benefits of renewable energy based EV charging with vehicle-
grid-integration can be achieved by establishing optimum and
interactive communication between electric  vehicles and
power market. The vehicle-grid-integration improves overall
performance of the electricity grid. The overall success of
electric vehicle charging with grid integration infrastructure
depends on cfficient integration of renewable energy sources,
advancement in storage technology and intelligent and reliable
control and communication between EV-grid.
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TABLE I: ENERGY STORAGE SYSTEM (ESS) [39]-[41]

Lead Acid (Pb-Acid) 30-50
Nickel-cadmium (Ni-Cd) 50-80
Nickel-iron (Nile) 50-60
Nickel-metal hydride (Ni-MH) 70-95
Sodium-nickel chloride (NaNiCl;)  90-120
Lithium-ion (Li-lon) 118-250
Lithium-titanate (Li>T i03) 80-100
Zine-air 460.
Hybrid Capacitor 10-15
Flywheel Energy Storage 10-150
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