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Abstract—The 3-Dimensional Convolutional Neural Network
(3D CNN) and Long Short-Term Memory Network (LSTM)
have consistently outperformed many approaches in video-based
Facial Expression Recognition (VFER), The vanilla version of
the fully-connected LSTM (FC-LSTM) unrolls the image to a
one-dimensional vector, which results in the loss of vital spatial
information. Convolutional LSTM (ConvLSTM) overcomes this
limitation by performing LSTM operations in terms of convo-
lutions without performing any unrolling, as in the case with
FC-LSTM. Motivated by this, in this paper, we propose a neural
network architecture that consists of a blend of 3D CNN and
ConvL.STM. The proposed hybrid architecture captures spatial-
temporal information to produce competitive accuracy on three
publicly available FER databases, namely the CK+, SAVEE,
and AFEW. The experimental results demonstrate excellent
performance without using any external emotion data with an
added advantage of having a simple model with a comparatively
fewer number of parameters and model size. OQur designed FER
pipeline is a suitable candidate for automatic recognition of facial
expressions in real-time on a resource-constrained embedded
platform.

Index Terms—Video Facial expression recognition (VFFE);
3D convolutional neural networks (3D CNN); long short-term
memory (LSTM); convolutional LSTM (ConvLSTM).

I. INTRODUCTION

Human-computer interaction (HCI) has seen a lot of devel-
opment in recent years. Video-based facial expression recog-
nition (VFER) remains the most central component of HCI
with a variety of methods proposed to date. However, VFER
remains a challenging problem due to several limitations
associated with the physical factors such as age, gender,
ethnic background, and lack of contextual information as-well-
as variations due to changes in lighting conditions, poses,
and occlusion. Recently, 3-dimensional convolutional neural
networks (3DCNN) have shown great ability in FER tasks
by modeling spatial and temporal information simultaneously.
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These 3DCNN architectures have often been combined in
different ways with recurrent neural network (RNN) models
to capture long term dependencies and feature enhancement,
as demonstrated in [1], [2].

Some of the above hybrid models of 3DCNN and RNN
perform very well in the VFER task. Based on the perfor-
mance of ConvLSTM in several computer vision applications,
in this paper, we explore the combination of 3DCNN and
Convolutional Long-Short Term Memory (ConvLSTM) for the
classification of facial expressions in a video sequence. Con-
VLSTM as proposed in [3], shows its superiority over fully-
connected LSTM (FC-LSTM) in number of spatial-temporal
tasks like Moving MNIST Dataset, Radar Echo Dataset [4].
The main advantage of ConvLSTM is that the input-to-state
and state-to-state transitions are convolutional, and thus, are
inherently more suited to images, as there is no loss of spatial
correlation as compared to the FC-LSTM, which operates on
vectorized features. We evaluate our approach on three well-
known FER databases, namely CK+ [5], SAVEE [6], and
AFEW [7]. Without using any additional videos with emotion
labels in our training set, our approach achieved competitive
performance.

A typical FER algorithmic pipeline consists of three main
stages, namely the face detection, feature extraction, and
feature classification. The face detection stage often accom-
panied by the alignment is more or less similar in all the
algorithms. The techniques mainly used are the Viola-Jones
and more recent deep learning-based face detectors (OpenCV).
Traditionally, the feature extraction stage is done using Local
Binary Patterns (LBP) [8], Histogram of Oriented Gradients
(HOG) [9], Local Phase Quantization (LPQ) [10]. Since these
methods are hand-crafted for their specific application, they
do not generalize well in different imaging conditions such
as lighting, occlusion, subjects’ ethnicity, etc. More recently,
works based on CNNs have been proposed for facial expres-



sion recognition and have demonstrated to achieve superior
performance. _

The remainder of the paper is organized as follows: Section
2 provides an overview of the related works on video-based
facial expression recognition. Section 3 explains our proposed
hybrid of 3D CNN and ConvLSTM. Experimental results and
analysis are presented in Section 4, followed by conclusive
remarks in Section 5.

II. RELATED WORKS

. Techniques available in the literature for facial expression
recognition (FER) could be broadly classified into two ma-
jor categories viz image-based methods and video/sequence-
based methods. Static image-based techniques for FER use an
end-to-end trainable convolutional neural network (CNN) for
the classification of facial expressions using peak expression
images. For instance, the work presented in [11] used an
ensemble of multiple deep networks for FER in a single static
image. In [12], the authors proposed a technique for FER
using a weighted fusion of features extracted from the gray-
scale and local binary pattern (LBP) encoded facial images.
Expression related features from gray-scale facial images were
extracted using ImageNet pre-trained VGG16 CNN and, that
from the LBP encoded facial images using a shallow 2D-
CNN trained from scratch. The authors in [13] presented a
multi-channel deep neural network that learns and fuses the
spatial-temporal features for recognizing facial expressions in
static images. Here optical flow image is extracted between
the peak expression face image and neutral face image and
used as temporal information. Moreover, the emotional face
image alone is used as the spatial information.

:+ The video/sequence-based methods for facial expression
recognition, on the other hand, extract both spatial and tem-
poral information from an expression sequence, either using
a- hybrid of CNN & LSTM or a 3DCNN. In [14], the
authors presented an integrated deep learning framework for
facial expression recognition. Two deep learning models, one
extracting the temporal appearance features from gray-scale
images, and the other extracting the temporal geometrical
features using landmark-based geometrical features, are first
trained separately. Once trained, the models are combined
using a novel integration method to boost the recognition
accuracy. In [15], the authors proposed a technique for video-
based facial expression recognition using a combination of
deep neural network (DNN) and conditional random field
(CRF). Here DNN has been used to capture the spatial
relationship among the expression images, whereas a linear
change of CRF is used to capture the temporal relations. In
another work discussed in [16], a new technique has been
proposed for facial expression recognition in videos. The
proposed technique captures spatiotemporal information using
a combination of CNN and nested LSTM. The spatiotemporal
convolutional features from the image sequences are extracted
using 3D CNN and the dynamics of the facial expressions are
captured by nested LSTM with two-layered architecture. The
first layer LSTM called T-LSTM is used to model the temporal

dynamics of the spatiotemporal features in each convolutional
layer, and the second layer LSTM called C-LSTM is used to
facilitate the integration of the outputs of all T-LSTMs to-
gether. This helps in encoding the multi-level features present
in the intermediate layers of the network. In yet another
work presented in [17], the authors have used a 3DCNN
architecture that learns to extract the static information using
RGB sequences and dynamic information from optical flow
sequences. The performance of the presented framework was
tested on three publicly available FER databases namely the
CK+ database, AFEW database, and SAVEE database. Two
types of techniques were used for the extraction of optical
flow. The first technique used for optical flow computation
is the regular optical flow and uses the Gunner Farneback’s
algorithm. The second type contains the accumulative motion
information of facial muscle movement, so it is called accumu-
lative optical flow. In [18], the authors have proposed several
schemes for facial expression recognition in an emotion clip
using a hybrid of 2D-CNN & LSTM and C3D & LSTM.
Moreover, a fusion of these schemes has also been explored
to enhance the performance utilizing the effectiveness of the
different schemes. Moreover, a hybrid of recurrent neural
network (RNN) and 3D convolutional networks (C3D) has
been explored for VFER in [1]. A technique for VFER using
3D CNN incorporating deformable parts learning has been
demonstrated in [19]. Zhao et al. [20], proposed a method
for facial expression recognition in a video sequence using
Local Binary Pattern (LBP) features extracted from three
orthogonal planes (LBP-TOP). Their presented LBP-TOP op-
erator extracts expression features from a sequence of frames
in the form of histograms computed from three orthogonal
planes. In [21], the authors presented a technique for VFER
using a fuzzy ARTMAP neural network (FAMNN). Hyper-
parameters of the FAMNN has been determined using the par-
ticle swarm optimization (PSO). In [22], the authors proposed
a technique for VFER using a Cross-channel Convolutional
Neural network (CCCNN). In [23], the authors proposed a
technique for VFER using a part-based hierarchical bidirec-
tional recurrent neural network (PHRNN). Moreover, a multi-
signal convolutional neural network (MSCNN) has also been
proposed to extract spatial features from still frames of the
expression sequence. Finally, both PHRNN and MSCNN fused
extracts the partial-whole, geometry-appearance, and dynamic-
still information, effectively boosting the performance of facial
expression recognition. A manifold learning-based framework
has been explored for VFER by Liu et al. [24]. Scheme for
VFER using transfer learning and spatial-temporal fusion has
been demonstrated by Ouyang et al. [25] whereas a hybrid
of 2D CNN and RNN has been utilized in [26]. The work
presented in [27], have proposed a fusion of audio and visual
expression related information for FER. The also analyzed the
impact of noise on the final decision of the system.

III. PROPOSED METHOD

Figure 1 shows the block diagram representation of our
proposed facial expression recognition framework. As could
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Fig. 1. Proposed framework for video-based facial expression recognition
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Fig. 2. Prototypical facial image with 68 landmarks

be seen from the figure, the framework consists of a sequence
of steps with specific functionality. In the first step, the input
pre-processing unit takes video frames as input and returns
the location of the face and facial landmarks. Using the
facial landmark information, the detected faces are aligned
such that they share spatial symmetry. The aligned facial
images are then cropped and scaled to a standard size. The
second unit called the 3D CNN unit takes as input the pre-
processed facial images of some fixed duration (# frames)
and outputs a sequence of features maps learned using a set
of convolutional and max-pooling layers. These feature maps
are then fed to the ConvLSTM unit, which further extracts
information from the feature maps and leamns to model the
evolution of expressions as contained in the input frames.
The feature maps from the ConvLSTM unit are flattened and
passed to a fully-connected and softmax layer. The softmax
layer then classifies the extracted representation corresponding
to an expression sequence into one of the expression labels.
Below, we provide details of the various units used in our
proposed FER framework.

A. Input pre-processing unit

As discussed above, the input processing unit takes as input
the video frames and provides the registered facial image of 64
x 64 pixels resolution. For face detection, we used the open-
source face detector and facial landmark detector available
at [28]. The position of the 68-landmarks obtained from the
landmark localizer is shown in Fig. 2. With the help of these
landmarks, the facial image is aligned to share a similar spatial
location of different facial components.

B. 3D CNN and ConvLSTM Unit

Better recognition accuracy is usually achieved by
sequence-based facial expression techniques. These techniques
using video sequences, extract both the spatial and temporal
features, and learns to model the evolution of the facial ex-
pressions. Deployment of 3D CNN for such an application has
a direct advantage as it could model both spatial and temporal
changes associated with the change in facial expressions.
Moreover, one could also find it more reasonable to learn
short-term spatial-temporal features by 3D CNN and long-term
spatial-temporal features by LSTM/RNN. In such a situation,
the vanilla FC-LSTM is often used, however, it results in
loss of spatial correlation information. Therefore, we used
ConvLSTM on the output of the 3D CNN in our proposed
approach as shown in Fig. 1.

As shown in Fig. 3, the 3D CNN model has three 3D con-
volutional layers, one 3D max-pooling layer, one ConvLSTM
block, one fully-connected layer, and a softmax classifier layer.
Each 3D convolution block is followed by a ReLU activation
function to perform the non-linear transformation of features
between the layers. The output from the second max-pool layer
is fed as input to the ConvLSTM layer which has 16 units, The
subsequent layer is the fully connected layer, which takes as
input the flatten output form the ConvLSTM layer. Finally, the
fully-connected layer is connected to the softmax layer, which
categories the output from the facial sequences into one of
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Fig. 4. Schematic representation of basic ConvLSTM architecture

the seven facial expression classes, namely neutral, surprise,
happy, disgust, sad, fear, and anger.

Though LSTM is very successful in handling temporal
informations, however, full connections in input-to-state and
state-to-state transitions in LSTM does not take spatial infor-
mation into account, and thus, leads to loss of spatial informa-
tion, which is crucial modeling spatial-temporal information
involved in fall and non-fall activities. To overcome this lim-
itation of LSTM, Xingjian et al. [3] introduced convolutional
LSTM (ConvLSTM), in which the state-to-state transition op-
erations in the LSTM are replaced by convolution operations.
Recently, several works have also been proposed exploiting the
usefulness of ConvLSTM in human action related tasks [29],
[30]. Figure 4 shows the internal details of the ConvLSTM
layer, and necessary mathematical computation involved is
depicted in Egs. (1)-(6).

F'=o (W« X'+ Wh x H ! 4 bf) )
I'=o (W= * X'+ Whix B0 1 bY) @)
G* = tanh (W™ x X' + W9 « H*™1 4 b9) ©)
C'=C"'oF'+Gol @

O' = o (W x Xt + WhoH!""1 1 °) (5)

H = tanh (C) ©OF (6)

In Eqgs. (1)-(6), X* is the input feature map, C* is the cell
output, H* represents hidden state, F'¢ is the forget gates, It is
the input gate, and O° is the output gate. Also, * and © denote
the convolution operator and Hadamard product, respectively.
Additionally, W= & Wh, W29 & Whe, W=f & Wh/, and
W= & W"® are the 2D convolutional kernels operating on the
inputs and hidden states corresponding to the input gate, input
modulation gate, forget gate, and output gate, respectively.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we introduce the databases used for evalu-
ating our model. We also discuss the implementation details.
Finally, we compare our results with the state-of-the-art tech-
niques available in the literature.

A. Dataset details

We evaluated our method on extended Cohn Kanade (CK+),
SAVEE, and AFEW datasets. All these datasets contain clips
of various facial expressions. The CK+ and SAVEE are lab-
controlled, whereas the AFEW is captured in the wild. Brief
details of these datasets have been discussed below.

The CK+ database contains 593 sequences from 123 sub-
jects. But only 327 sequences of them are labeled with
emotions. Sequences start from the neutral frame and reach
up to the peak frame in one of the seven basic emotions -



anger, contempt, disgust, fear, happiness, sadness, and sur-
prise. The SAVEE database contains a total of 480 video clips
from 4 subjects. The video contains both audio and visual
information. We discard the audio part and extract only the
image frames for our experiment. Videos of SAVEE dataset
express one emotion throughout each video clip, that is, there
is no onset or offset of the emotion expressed. The acted
facial expressions in the wild (AFEW) database is a dynamic
temporal facial expression dataset that contains close to real-
world emotions extracted from Movies and TV series, The
dataset contains 773 training clips, 383 validation clips, and
653 test clips. Since labels are not available for the test set,
we perform our experiments only on the train and validation
part. Like SAVEE, AFEW videos too have no onset or offset
of the emotion expressed.

B. Implementation Details

First, we extract the faces from the frames of all the
databases using Dlib’s frontal face detector and correlation
tracker. The obtained sequences of faces are aligned and
then resized to 64x64 pixel resolution and converted to gray-
scale. Additionally, for AFEW we perform gamma correction
~ = 1.5 for dark images. We also use a custom CNN trained
on the FER2013 database to extract features to input into the
ConvLSTM as suggested in [1]. Thus, we have two features
for AFEW, one from the 3D-CNN-ConvLSTM unit and other
from the (FER2013) CNN-ConvLSTM. These two are added
before passing onto the fully-connected layers. This processing
is required because AFEW captures emotions in the wild and
the small size of the database makes it difficult to learn the
parameters of a deep model, considering the complexity of the
emotions. We normalize the image sequences along the time
axis to a fixed length of 8. These 8 frames are chosen in a
uniform manner as follows: (1) the first and last frame of each
sequence is taken to be the first and last frame of the 8-frame
sequence, (2) the rest 6 frames are selected in terms of an
equal-interval scale.

To avoid over-fitting, we augment the datasets. For CK+,
we rotate each image by different angle in range {-15°,
—-10°, —5°,5°,10°,15°}, for SAVEE and AFEW the images
are rotated by angle in range {—10°, —5°,5°,10°}. Each of
these images is flipped horizontally including the original
image. The result is an augmented dataset which is 14 times
the size of the original for CK+ and 8 times the size of
the original for SAVEE and AFEW dataset. The proposed
network was implemented in Keras on Tesla K80 GPU. In the
training phase, we used Adam optimizer with a fixed learning
rate of 0.0001. We used categorical cross-entropy as our loss
function and accuracy as our evaluation metric. The network
was trained for 80 epochs and the model with the highest
validation accuracy was selected.

C. Results

The result for the CK+ 7 database is reported as the 10-
fold subject-independent cross-validation accuracy. Subjects
in any 2 folds are mutually exclusive. As shown in Table 1,

Anger 1] 0.03
Contempt .8 0.02 0.04
Disgust
Fear
Happy
Sadness

Surprise

Anger  Contempt  Disgust Fear Happy Sadness Surprise

Fig. 5. Confusion matrix on the CK+ database
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TABLE [
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART METHODS ON THE
CK+ DATABASE

Method Accuracy(%)
3DCNN-DAP [19] 87.90
3DCNN [17] 98.77
LBP-TOP |20] 82.40
DTAGN [14] 97.25
STM-ExpLet [24] 94.19
3DIR [2) 9321
PHRNN-MSCNN [23] 98.50
IDCNN-ConvLSTM (ours) 95.10
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TABLE II
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART METHODS ON THE
SAVEE DATABASE

Method Accuracy(%)
CCCNN [22] 93.90
Banda and Robinson [27] 98.00
FAMNN [21] 95.80
3DCNN [17] 97.92
3DCNN-ConvLSTM (ours) 98.83

TABLE III
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART METHODS ON THE
AFEW DATABASE

Method Accuracy(%)
3DCNN [17] 38.12
RNN [26] 39.60
Resnet-LSTM [25] 46.70
VGG-LSTM [18]) 48.60
C3D [1] 48.30
3DCNN-ConvLSTM (ours) 43.86

our proposed hybrid of 3D CNN and ConvLSTM achieved
over 95% accuracy. Although it does not beat the state-of-
the-art, still it achieves competitive accuracy. Note that all the
methods compared to are sequence-based, that is, those which
exploit spatial-temporal information. We achieved the accuracy
without pre-training on any other emotion dataset, and we do
not use facial landmark features as used in [14] and [2]. Fig.
4a shows the confusion matrix of our result where fear and
sadness achieve less recognition accuracy and are confused
with each other. The emotions having less accuracy are the
ones having the least amount of data available (18 sequences
for contempt, 25 sequences for fear, and 28 sequences for
sadness).

The SAVEE dataset is partitioned into 80:20 ratio having
80% training data and 20% test data. Since there are only 4
subjects, the subject independent test is not viable. The accu-
racy reported on the 20% part is averaged over 5 runs. Table
2 compares our method with other state-of-the-art techniques.
We achieve state-of-the-art accuracy on the SAVEE dataset,
although with a small margin. It is important to note that
we did not use audio features and that all the other methods
employ a multi-modal fusion of audio and video features. Fig.
4b shows the confusion matrix of our result, where fear reveals
a relatively low recognition accuracy, otherwise, the method
performs very well in classifying the rest of the expression
sequences in the test set.

We perform two types of experiments on AFEW. The first
involves partitioning the dataset (train + validation) into 80:20
ratio with training on 80% and testing on 20%. The accuracy
reported on the 20% part is averaged over five runs. We get an
accuracy of 83.12%. The second experiment involves training
on train set and testing on the validation set. Here we get an
accuracy of 43.86%. Fig. 5a and Fig. 5b shows the confusion
matrix of the two experiments, respectively. The confusion
matrix for the 2nd experiment tells that anger, happy, and
neutral achieve good enough accuracy, whereas disgust and
surprise perform poorly. Table 3 compares our method with
other techniques. Our method performs fairly here. For a
particular method, different accuracy corresponds to different
models, with the last one being a fusion of multiple models.
We note here that our method performs better than some of the
individual models but worse than the fusion because we do not
employ fusion techniques. Also, we do not use audio modality
or any extra emotion videos to train our model. Note that
the fusion accuracy reported except [18] does not incorporate
audio features in the fusion process.

V. CONCLUSION

In this work, we presented a blend of 3D CNN and Con-
vLSTM for facial expression recognition in videos (VFER).
The proposed pipeline consists of a face detector, a landmark
detector for facial image alignment, and a deep convolutional
neural network architecture. First, the input is fed to the 3D-
CNN model which incorporates the spatial-temporal correla-
tions in its feature map. The resulting feature map is then fed
to the ConvLSTM to further extract temporal information. We




* evaluate our approach on CK+, SAVEE, and AFEW databases.
Qur experiments demonstrate competitive accuracy on all the
databases. Our future work will include the facial landmark
features, audio modality if available, and the use of pre-trained
models to give a good initialization point and overcome the
shortage of facial expression data.
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