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Abstract

A simple metamaterial loading scheme for a helical slow-
wave structure (SWS) has been proposed in lieu of a
conventional anisotropic loading — metal vane loading
scheme. The proposed structure consists of a helix in a
metal envelope supported by three rectangular dielectric
rods. Left handed material property (epsilon-negative) of
these support rods have been achieved by printing -
shaped metal-strip on both of radial faces of each rod. The
structure has been simulated on CST and shows better
control on dispersion and higher interaction impedance
compared to conventional anisotropically loaded helix
SWS,

1. Introduction

Non-resonant helix SWS is almost dispersion free which
can further be improved by suitably loading the helix and
hence finds potential application in helix traveling-wave
tubes (TWTs) for wideband applications. However,
TWTs for electronic warfare (EW) systems, namely,
ECM. ECCM. ete, demand ultra wideband TWTs with
improved performances and that can be achieved if the
SWS exhibits flat-to-negative dispersion characteristics.
Such dispersion characteristics are achieved by suitably
loading the helix anisotropically [1], [2] or
inhomogenously [3] and or by loading with left handed
metamaterials [4]. [5]. %

However, flat-to-negative dispersion characteristics of
helix SWS over a wide frequency range is achieved by
loading the helix SWS anisotropically— realized by
providing radial inward meltal vanes from the outer metal
jacket (metal envelope). But realization of vane loaded
anisotropic structure is considerably complex than
inhomogeneous loading. This motivated authors to
achieve [lal-to-negative dispersion using metamaterial
loaded helix SWS without using metal vanes which
further enhances harmonic contents in the RF
performance of a TWT.

Cold analysis, namely. dispersion and interaction
impedance characteristics of helix SWS, supported with
double-negative MTM rectangular support geometry —
realized by printing metallic split-ring resonators(SRRs)

and metallic strips on radial faces of rectangular support
rods have been reported in [5]. But printing of SRRs and
or metallic strips on the faces of dielectric supports have
certain limitations due to dimensional limitations of the
latter. In this paper, authors have proposed a novel and
simple helix SWS assisted by [-shaped metal-strips on
rectangular support rods to achieve epsilon-negative
MTM [6] (section 2)and the SWS exhibits flat-to-negative
dispersion  characteristics  with  higher interaction
impedance. CST-Frequency domain solver have been
used to extract the constitutive parameters of the [-shaped
MTM structure and subsequently CST-Eigen mode solver
[7] has been used to get the dispersion and interaction
impedance characteristics of the proposed structure
(section 3). The proposed structure exhibits flat-to-
negative dispersion characteristics with higher interaction
impedance replacing complex conventional anisotropic
loading scheme.

2. Proposed Structure

The proposed structure comprises a helix in a metal
envelope supported by rectangular dielectric rods each
printed with I-shaped metal-strip printed on both of its
radial faces exhibiting epsilon-negative MTM(Fig. 1(a)).
Figure 1 (b) represents its counterpart and depicts
anisotropic wedge-shaped metal vane loaded structure.
The relevant dimensions of both these structures are given
in the caption to Fig. 1.
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Fig. 1. CST modcls of a single-turn helix in a metal
envelope (a) with rectangular dielectric helix-support
rods assisted by I-shaped metal-strip epsilon-negative
MTM (proposed structure) and (b) with rectangular
diclectric helix-support rods and wedge-shaped metallic
vanes, the latter projecting inward from the envelope
(structure for comparison) [1]. [ = 0.65 mm. ao = 0.75
mm, pitch = 0.61 mm, helix width = 0.2 mm, relative
permittivity of support rod & = 6.5 (BeO). X' = (.45 mm,
H=075mm. A=0.12 mm, x = 0.61 mm, w= (.05 mm,
c=15mm, b=009, 6, =60°].




3. Results

Both proposed and conventional SWSs (Fig. 1) have been
simulated in CST [7] to obtain both dispersion
characteristics (phase velocity (vy,/c) versus frequency)
and interaction impedance (KJ characteristics (Fig. 2).
Negative dispersion has been achieved using the proposed
epsilon-negative. MTM assisted structure with higher
values of K (Figz. 1(a)) than those obtained in the
conventional vane-loaded helix SWS (Fig. 1(b)), which is
an alternative to complex conventional anisotropic
loading to achieve flat-to-negative dispersion with
enhanced K 1o improve device performances without
affecting other design parameters and can find potential
application for ultra wideband applications in EW
syslems.
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Fig. 2. Variation of vy (solid line) and K {dotted line)
with frequency of proposed model (Fig. I(a) and
conventional vane-loaded structure (Fig. 1(b)) [~ = 0.12
mm, x = 0.61 mm. w=0.05 mm].
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Fig. 3. Unit cell of proposed I-shaped MTM printed on
both the radial faces of the rectangular BeQ support rod
(dimensions are given in the caption of Fig. 1).

The curvature angle of the unit cell (Fig. 3) is 1207,
because the unit cell is periodic in the azimuthal direction
(three unit cell, Fig. 1(a)). The constitutive parameters of
the I-shaped MTM unit cell (Fig. 3) have been obtain
using post-processing of CST-Frequency domain solver
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considering an incident wave has electric and magnetic
field directed z-axis and y-axis, respectively, (Fig. 4(a))
and vice versa (Fig. 4(b)).
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Fig. 4. Extracted relative permittivity and permeability
of I-shaped MTM unit cell (Fig. 3).

Further, one can achieve positive, flat and negative
dispersion by appropriately choosing the physical
dimensions of the epsilon-negative MTM-loaded structure
(Fig. 3) (Table 1).

Table 1: Nature of dispersion vis-a-vis I-shaped MTM
dimensions

Dimensions of I-shaped MTM (mm) Type of
dispersion
h x w
0.30 0.50 0.05 Positive
0.49 0.46 0.05 Flat
0.55 0.50 0.05 Negative
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Fig. 5. Effect of dimensions ofl—shap\éd MTM (Table 1)
on vy/c and K.
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