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Abstract. Navigation of drones can be conceivably performed by opera-
tors by analyzing the brain signals of the person. EEG signal correspond-
ing to the motor imaginations can be used for generation of control sig-
nals for drone. Different machine learning and deep learning approaches
have been developed in the state of the art literature for the classifica-
tion of motor imagery EEG signal. There is still a need for developing a
suitable model that can classify the motor imagery signal fast and can
generate a navigation command for drone in real-time. In this paper,
we have reported the performance of convolutional stacked autoencoder
and Convolutional Long short term memory models for classification of
Motor imagery EEG signal. The developed models have been optimized
using TensorRT that speeds up inference performance and the inference
engine has been deployed on Jetson TX2 embedded platform. The per-
formance of these models have been compared with different machine
learning models.

Keywords: Motor Imagery - Long Short Term Memory - Convolutional
Stacked Autoencoder - Drone - Jetson TX2.

1 Introduction

With the emergence of drone technologies, drones have become an integral and
significant component of almost every security and surveillance tasks in civil
and military domain. In present scenario, the drones are controlled using hand-
held remote controller or joystick. This limits the usability of the drones for
vast applications as the hands get occupied in the navigation operation. This
in effect causes an increase in the effective workload of an operator that lead
to under-performance or fatigue of the operator. Thus in order to design a suit-
able interface for controlling the navigation of a drone, a hands-free control is
most desirable solution. In the past decade, researchers across the world have
worked towards the development of different hands-free interfaces using human
interfaces such as body gesture, eye tracking and EEG signal. Brain controlled
interfaces have gained significant attention due to the naturalistic way of human
operation.
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The need for development of a brain computer interface (BCI) for the navi-
gation of drones has motivated the researchers to develop interface by analysing
EEG signal corresponding to different facial expressions, such as, blinking, smil-
ing, raising eyebrows etc., and mapping them to different motions of the drone.
The EEG signal corresponding to these actions generate signal patterns that
are significant enough to generate a command for the drone. However, the com-
mands generated using facial expressions makes the interface very unreliable and
unrealistic.

The most congruous solution to this problem can be achieved by analysing
EEG signal corresponding to motor imaginations of the operator and generation
of control signals for drone. Motor Imagery(MI) represents the mental process
of simulating a motor action. These MI signals are primarily mediated by Mir-
ror Neuron System which is primarily observed over the pre-motor cortex and
sensory motor cortex. These signals share similar cognitive processes with ac-
tual motor movement execution. The MI signal is generally observed through
the computation of suppression and enhancement of mu rhythms(8-12Hz) while
performing a motor imagery task[8].

Classification of motor imagery EEG signal has been performed using differ-
ent machine learning and deep learning approaches since the last two decades.
Owing to the fact that the EEG data is non-stationary in nature, most of the clas-
sification models are built with the consideration of adaptive parameter learning.

Most of the motor imagery classifications models developed uses a relevant
set of features that can learn the necessary fluctuations in the EEG signal cor-
responding to the motor actions. To understand the underlying structure of the
EEG signal, mostly Temporal features, such as, higher order statistical features
(variance, skewness, kurtosis etc.), Morphological features, such as, Curve length,
Average nonlinear energy, Number of peaks, Hjorth features (activity, mobility
and complexity); Frequency and Time-Frequency Features, such as Fourier co-
efficients, Band Power, Wavelet Coefficients, Wavelet Entropy; Spatial Features,
such as Common Spatial Patterns (CSP); and Connectivity Features, such as,
Correlation or synchronization between signals from different sensors and/or
frequency bands, Spectral Coherence etc. are computed.

Linear discriminant analysis (LDA), Support vector machines (SVM) and
Bayesian classifiers have been most commonly used for classification of motor
imagery signal for real-time operation. But to deal with EEG non-stationarity,
adaptive classifiers has gained significant importance whose parameters are incre-
mentally updated online. Adaptive LDA and Adaptive Bayesian classifier based
on sequential Monte Carlo sampling have been developed for MI classification
that explicitly model uncertainty in the observed data.

A significant number of researches have been performed using Riemannian
geometry classifier (RGC) that maps the EEG data directly onto a geometric
space or tangent space and learns a manifold [3]. The RGC computes intrinsic
distance between data points in the manifold and classifies the data [9]. Although
RGC can provide better generalization capabilities due to manifold learning,
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these class of classifiers are computationally extensive and thus is not suitable
for a real-time online application.

2 Related Work

Dedicated feature extraction and selection requires a long calibration time and it
changes for different sessions of data collection. Thus these models are unfit for
developing a real-time BCI application. Deep learning methods are thus more
suitable to learn the most relevant features for the task at hand. These models
are also better suited to model high-dimensional data.

Convolutional Neural Network (CNN) based classifiers provide a better so-
lution to this problem as it generates features of the signal by considering both
temporal and spatial variation in the EEG data. Due to the intrinsic structure
of using local receptive fields in convolution layers, the temporal variation in
EEG automatically gets included. CNN based classifiers have been developed
for the classification of motor imagery signal|7]. But due to the static structure
of the convolution layers, it does not learn the non-stationarity in EEG data.
Autoencoder (AE) based classifiers provide much better solution as it learns
the features from the raw signal in unsupervised fashion and provide a good
classification performance. Multi-modal stacked AE with separate AEs for EEG
signals and other physiological signals has been reported to outperform the tra-
ditional classifiers. Sequential LSTM models and Bidirectional LSTM have been
developed to learn the temporal variation in the EEG data.

Deep Belief Network (DBN) have been used extensively to classify motor
imagery signals is another majorly used EEG classification method [5][2][6][4].
DBN takes the non stationarity into consideration and learns features directly
from data in hierarchical manner in unsupervised manner. Thus DBN classifiers
outperform most of the other classification techniques. Sparse representation of
the high dimensional EEG data can be obtained using sparse-DBN model. An
adaptive DBN structure has been developed that can perform Belief Regenera-
tion by using samples generated from a DBN to transfer the learned beliefs to a
second DBN. In order to incorporate new knowledge in the model, the generated
samples and new data from the stream can be used to train the DBN.

To develop a real-time BCI, we have proposed two deep learning models
that learns the features of the EEG data through convolution and classifies the
data in unsupervised fashion. The classifier models have been described in the
following section.

3 Proposed Method

3.1 Data Description

We have used BCI competition IV data set 2b dataset for our experiments. The
dataset consists of EEG data from 9 subjects performing two classes of motor
imagery activities, viz., left hand and right hand movement. Five sessions of
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motor imagery experiments were performed on each of the subjects, among which
the first two sessions were recorded without feedback and the other three sessions
were recorded with online feedback. Each of the first two sessions contains 120
trials, and each of the rest three sessions (with feedback) includes 160 trials. The
EEG data were recorded using three channels, C3, Cz, and C4 with a sampling
frequency of 250 Hz.

3.2 Data Pre-processing

The EEG data have been first bandpass filtered between 0.5 Hz and 60 Hz, and
a notch filter at 50 Hz was used to remove the power line noise. As the motor
imagery occurs due to a change in mu-rhythm (8-13Hz) and beta- rhythm (15-30
Hz) over the central motor cortex, the data is band pass filtered between 8-30
Hz. The data from the first 2 sessions are used for training the model.

Each experimental trial started with a fixation cross and a beep followed by
a visual cue of 3 seconds provoking a left or right hand movement. The timing
scheme of the motor imagery experimental paradigm has been shown in Fig. 1.
The data between the period 4-7 seconds contain the motor imagery data for
each trial, i.e., (3 x 250 =)750 samples of data. To incorporate the transition
in data from EEG basecline to MI data, we have incorporated 100 milliseconds
of data at the start and end of the MI period. Thus the new motor imagery
instances are (0.14-340.1)= 3.2 seconds long between the time period of 3.9 to
7.1 seconds for each instance, i.e., (3.2¥250) =800 samples of data.

Similarly, the non-MI data has been generated by considering data between
duration 0-3.2 seconds from each experiment trial.

beep
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Fig. 1. Timing scheme of motor imagery

Thus we have considered three major classes for the classification problem,
viz., Left MI, Right MI and Non MI. The EEG signals corresponding to left and
right hand movement has distinct signature as shown in Figure 2 which has been
further classified.

All the studies on the dataset reports classification over Left and Right MI,
but here we have considered Non Motor Imagery too as our purpose is to gen-
erate navigation commands for the drone corresponding to the thoughts of the
operator.
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Fig. 2. Motor Imagery EEG for Left and Right hand movement

3.3 Data Augmentation

The number of left and right motor imagery and non-motor imagery data trials
obtained from the database is very limited. The number of trials for each of the
classes for the first two sessions are enlisted in the table 1. Proper training of
a deep learning architecture requires a voluminous dataset. With limited data
availability, the learned model overfits and thus lacks the ability of generalization.
Thus it is crucial to increase the volume of the dataset by augmentation of new
data.

To increase the number of data instances, augmentation of EEG data has
been performed. For generation of new realistic EEG data, we have a developed
a generative adversarial network [1] architecture. The generator generates new
EEG data from random noise using a convolutional network. The discrimina-
tor/critic, on the other hand, uses a convolutional architecture to discriminate
the generated EEG data from the original EEG data. The similarity between
generated and real data is computed using Wasserstein distance.

Wasserstein distance measures the distance between two probability distri-
butions considering optimal transport cost. In Wasserstein GAN, the difference
between the true distribution and the model distribution of the data is measured
using Wasserstein distance instead of Kullback-Leibler divergence and Jensen-
Shannon distance. This helps in alleviating vanishing gradient and the mode
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Table 1. Number of trials per class for all subjects

Left MI|Right MI|Non MI

Subjectl| 99 101 200
Subject2| 99 99 198
Subject3| 90 88 178

Subject4| 123 123 246
Subjectd| 119 120 239

Subject6| 77 84 161
Subject7| 110 108 218
Subject8| 121 101 222
Subject9| 88 94 182

collapse issues in generator. WGAN continuously estimates the Wasserstein dis-
tance by training the discriminator to an optimal model. This helps in keeping
the output in specific range even if the input is varied.

The structure of the generator and the discriminator has been shown in Fig.

3 and Fig. 4.
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3.4 Classification

Different dedicated feature extraction is generally performed to obtain signature
from clean pre-processed EEG data which includes temporal, spectral, morpho-
logical features, viz., Hjorth parameters, Power Spectral Density (PSD), Curve
length, number of peaks, Non Linear Energy, and Short Time Fourier Transform
(STFT). To deal with the non-stationarity in the EEG data, STFT feature have
been used. The STFT takes into consideration the temporal correlation in the
data.

Instead of using a dedicated feature extraction module, we have used deep
learning architecture to learn features from the EEG data in an automated
manner.

fassification

Fig. 5. Motor Imagery Classification with automated feature extraction

We have developed two models for classification of the motor imagery signal.
To avoid the inter-person variability of EEG data, one classifier model was learnt
for each of the subjects.

LSTM model learns the structure of EEG data by capturing temporal cor-
relation in the data. As LSTM modules can choose to remember and discard
the temporal information, it provides a better representation of the EEG data.
Whereas the CNN SAE models learn a latent space representation of the data
and does not specifically deal with the temporal variation of the data, which is
the most prominent feature of EEG data.

Stacked autoencoder models map the data into a latent space and thus learns
an unsupervised representation of the data. The convolution layers learn the local
variation in the data. The features from the latent compressed representation
are used for classification of the data.

3.4.1 Convolutional Stacked Autoencoder Model :

A Convolutional Stacked Autoencoder (CNN-SAE) model, as shown in Fig-
ure 6, has been developed to learn features from raw signal in unsupervised
fashion and provide good classification performance. CNN-SAE combinatorial
architectures provide the advantage of learning features using CNN and then
learning the unsupervised SAE classifier on the detailed features.

Autoencoder learns a lower dimensional representation of the data and sub-
sequent reconstruction of the data from the lower dimension space. The ar-
chitecture of our network consist of two convolution layers followed by three
autoencoder layers.

B
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The EEG input is 3.2 seconds long, with the sampling frequency of 250Hz
that results in 800 samples for 3 channels. Therefore the input tensor is of di-
mension 800x 3. The first convolution layer performs a temporal convolution over
the batch normalized input tensor. 32 filters with kernel size of (1,30) are used.
Resultant output is a tensor of shape (771,3,32). The second layer performs a
spatial convolution with 64 filters having a kernel size of (3,1) in an overlapping
manner giving an output of (78,1,64). Both convolution layers contain Paramet-
ric ReLU activation funcion (PReLU). The outcome after temporal and spatial
convolution is flattened and fed to the first encoder layer containing 1200 hidden
neurons. Two more successive encoders are employed with 600 and 150 hidden
neurons. All the autoencoders have ReLU activation function and 25% of neu-
rons are dropped after each encoder. Here the last encoder have the softmax
activation function with three outputs indicating whether the input contains a
Left MI, a Right MI or a non MI data.

4992 1200,
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PReLU
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Fig. 6. Proposed CNN-SAE architecture

3.4.2 LSTM based Model : To capture the sequential information in EEG
data, LSTM based models have been developed for the classification. Three
different models were developed for this purpose.

The first model is a shallow LSTM that uses two LSTM layers with 256
and 128 number of hidden layers respectively. The batch normalized input data
is fed to the LSTM model where the output of each layer is passed through
the tanh activation function. The output is passed through a dropout layer
with dropout=0.2 and recurrent dropout=0.1 to reduce overfitting and improve
the classification performance. The second model is a deep LSTM model with
256, 128 and 32 number of hidden layers. The same hyperparameter values are
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used for this model. The model was trained using RMSProp optimization while
considering the categorical cross entropy loss.

The third model is a convolutional LSTM (ConvLSTM) model that learns
the structure of the EEG data by capturing the spatio-temporal correlation
in the data. The input to state and state to state transitions are computed
using convolution. This model captures the variation in the data among different
channels placed over the motor cortex as well as the temporal variation in the
data.

4 Results and Discussion

The performance of different algorithms for Subject 4 have been reported in
Table 2. The SVM and LDA are standard techniques used extensively for motor
imagery classification. Extreme Learning Machine (ELM), regularized extreme
learning machine (RELM) and Kernel-ELM(KELM) has been used to classify
the motor imagery data due the fast computation of the algorithm which is
very suitable for real-time EEG data classification. But the performance of un-
supervised classification method DBN is the best as it learns the features from
the data on its own. Adaptive generative models can be used for better online
classification of the non-stationary EEG data.

Table 2. Motor Imagery Classification Accuracy for Subject 4

Method [Accuracy (%)
SVM 93.008
ELM 92.461

RELM 87.961
KELM 91.980
LDA 91.880
DBN 93.751
CNN-SAE 92.140
LSTM 95.330
ConvLSTM 92.530

Although SVM provides a good classification performance, it does not pro-
vide a good solution for EEG data from another session. DBN model can classify
the efficiently, similar to the CNN-SAE model. The deep learning models devel-
oped provide good accuracy at a higher processing speed. As the LSTM model
considers the sequential variability in the data, it performs well for the motor
imagery classification in real-time.

5 Inferencing on Jetson TX2 platform

The developed algorithm has been deployed onto the embedded platform Jetson
Tx2 which improves the performance and power efficiency using graph optimiza-
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tions, kernel fusion, and half-precision FP16. The developed tensorflow model
was optimized using TensorRT that speeds up inference performance. The in-
ference time for each 800x3 block data is ~ 9-10ms. Thus the model has been
further used to serially send navigation commands to the drone.

6 Conclusion

We have proposed a Conv-SAE model, a LSTM model and a Conv-LSTM model
for the classification of the motor imagery EEG signal. Stacked autoencoder
models map the data into a latent space and thus learns an unsupervised repre-
sentation of the data. The convolution layers learn the local variation in the data.
The features from the latent compressed representation are used for classification
of the data. The LSTM models takes the temporal variation into consideration
and thus both the spatial as well as temporal characteristics of the data are
well considered. The developed LSTM model outperforms the CNN-SAE as well
as the Conv-LSTM model. The developed models are well suited and generates
navigation commands for drone after every 10 ms duration efficiently. We can
further improve classification performance using ensemble models keeping the
model complexity in consideration.
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