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Abstract. Shape Memory Alloys (SMAs) are a unique class of smart materials that have the ability to recover their shape
on temperature stimuli. During this transformation, hysteresis and non-linear behavior can be observed and open-loop
control design s inadequate for tracking control of these actuators. This is a major setback for the design and
development ol any SMA device, The main hurdle is that this nonlinearity can’t be modeled effectively even by 3rd-
degree differential cquations. Additionally, the apparatus used for measurement of strain recovery during SMA actuation
includes linear variable differential transducer (LVIT), which is very bulky and expensive and doesn’t let us fully utilize
the potential of SMA applications in miniaturized devices, This research work presents a method to eliminate the bulky
position sensor by introducing an Artificial Neural Networks (ANN) to compensate for the non-linearity. Various
rescarchers have attempted to model the behavior of SMAs using ANN techniques but these models had a high RMS
error. In this paper. we develop a more complex neural network o model SMA’s behavior. We model SMA’s behavior
with (i) displacement prediction (1) temperature prediction. The results of our rescarch not only demonstrate the
offectivencss of Neural Networks for prediction of displacement and temperature of the SMA but also show how the
proposed architectures have a miuch lesser error as compared to carlier models and are much more effective at modeling
SMAs.

Shape Memory Alloys (SMAs) are a unique class of smart materials that have the ability to recover their shape on
temperature stimuli. This Shape Memory Effect (SME) oceurs due to temperature stimuli and stress-dependent shifts
which causes a change in the material’s crystalline structure between two different phases - martensite (low-temperature
phuse} and austenite {high-temperature phase). During the phase transformation, hysteresis and non-lincar behavior can
be observed which are a major seiback for any device design and development. Therefore. most SMA applications are
based on only two-states transformation - maintaining a total austenite phase by continuous heating or maintaining a total
martensite phase by continuous cooling. Due to the huge advantages provided by SMA. the Control of SMA’s phase
wansformation phenomenon 1s essential [or its usage in many areas of acrospace, biomedical. automobile, vibration-
dampers, cic. The main hurdic is that the nonlinearity can’t be modeled effectively even by 3rd-degree differential
cquations. Additionally. the apparatus used for measurement of strain recovery during SMA actuation is includes linear
variable differental transducer (LVDT). which is too very bulky and expensive and doesn’t fully utilize the potential of
SMA applications m miniaturized deviees. This rescarch work presents a method to eliminate the bulky position scnsor
Lo, LVIYT by introducing an artificial neural network (ANN). This climination will also reduce the total cost of an SMA
system. Various rescarchers have attempted to model the behavior of SMAs using ANN techniques but these models still
had a high RMS error. In this paper, we develop a complex ANN model to predict SMAs behavior and estimate strain
recovery based on identified mput parameters.




Current is used to produce the Joule heating effect to raise the temperature which triggers the phase wransformation in the
SMA wire. The ANN model tries to model the hysteresis {and non-linearity) between the Resistance difference and the
displacement of the SMA wire by taking resistance difference (dR) as input and predicting the displacement of the SMA
wire, We have also developed another Neural Network model to predict the temperature ol the SMA wire with the
current running through it and the resistance as the input. The results of our rescarch not only demonstrate the
effectiveness of the Neural Networks flor prediction of displacement and temperature of the SMAs but also show how the
proposed architectures have a much lesser error as compared to earlier models and are much more cifective at modeling
SMAs.

s INTRODUCTION

Shape Memory Alloys (SMAs) are a unique class of smart materials that have the ability to return to their
predetermined shape on temperature stimuli. When the alloy is below a particular “transformation” temperature, it
has a low yield strength and can be deformed casily into any desired shape which is the shape it retains. [1, Rao]

When the alloy is heated above its transformation temperature, this Shape Memory Effect (SME) oceurs (due to
temperature stimuli and stress-dependent shifts) which causes a change in the material’s crystalline structure
between two different phases - martensite (low-temperaturc ph(m) and anstamlc (high-temperature phase). |2, wiki].
The most common form of SMA is in the form of a wire ([ -degree o 1 Due (o its unique properties. it is
used in many areas of aerospace, biomedical, automobile, \f‘lbl.ﬂLIOﬂ ddmpus cte. Tt olfers a lot more advantages
than piezoelectric actuators and motors.[?] They are able to generate large deformations and large restorative forces
(if It encounters a resistance) at a much lower opcmtnw ﬁcqucnw [
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‘éi)z the design and developme . ["‘ Mavb(, not l{..qlllll.dl lhu >fore, most SMA apphcauons are
based on onh two-state lramlormallon maintaining a total austenite phase by continuous heating or maintaining a
total martensite phase by continuous cooling. Due to the huge advantmmq provided by SMA. the control of SMA’s
phase transformation phenomenon is imperative.

In the pursuit of SMA wire application, it has been observed that a large number of factors come into play which
has proved to be a hindrance. One of the main factors is the hysteresis which can’t be modeled effectively even by
Jrd-degree differential equations. Additionally, the apparatus used for measurement of strain recovery includes
linear variable differential transducer (LVDT), which is very bulky and expensive, Many models were proposed o
attempt to address this hysteresis problem including - Webb ct al, Cruz-TTernandez, and Hayward, Song and Quinn,
ete. One of the best approaches is to use Artificial Neural Networks (ANN) to solve this issuc. Neural nets possess
nonlinear function mapping and adaptation propertics. This makes it a viable candidate to be used as it can be used
as a feedforward controller in the actuation. Various rescarchers [77] have attempted to model the behavior of SMAs
using neural networks but these models still had a lagh RMS error. This paper aims to implement an open-loop
control of the SMA wire displacement device without the use of position sensors by using more complex neural
networks for hysteresis compensation. This will not only make the entire setup less bulky. but it also reduces the
high cost of the actuator.
c‘ma collection, a SMA test rig Is scl.
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both SMA 1n i.OTIl}Ji_&}nCL’IIﬂT\- tmm. We observe a hystcrcsm rt,hmol hlp bu»\u,ll (l] current,
resistance v/s displacement and (ii) current, resistance v/s temperature. The first ANN arel e trics to model Lhc
hysteresis between the difference?? Resistance and the displacement of the SMA wire by taking resistance
difference (dR}-as-input-and predicting the displacement of-the SMA-wire. The sccond ANN architecture to predict
the temperature of the SMA wire with the current running through it and the resistance as the input. (POWER?)

It is also important to note that the hysteresis behavior 1sn’t completely repeatable in nature. In every cycele. the
voltage v/s displacement follows a slightly ditferent curve. There can be as much as a 25% crror in the value of the
displacement (though the behavior becomes more stable after a few cycles and the voltage vis displacement curves
start to overlap). The curve isn’t completely smooth either. This has been attributed to ambivalent conditions and
environmental effects that can neither be controlled nor replicated. Ilence. we should use a low pass filter and use
the smoothed data for our model. We should also note that the current through the wire isn’t sinusoidal like the
applied voltage due to the change in resistance during phase transformation between Martensite and Austenite
phases.




The models only use one representative hysteresis loop. To remove chattering present due to environmental
noisc, the displacement data was filtered using a third order low-pass filter.

The most commonly used SMA is an alloy of Nickel and Titanium called NiTi or Nitinol. It has very good
clectrical and mechanical propertics, long fatigue life and high corrosion resistance. [t can recover from up to 5%
strain (500 MPa restoration stress). It has high resistance properties make it suitable to be actuated electrically with
Joule heating (using current instead of directly using temperature for the actuation of the wire). Hence, it is a good
approach to understand the relationship between the resistance difference and the displacement of the wire. Another
experiment is on predicting the temperature of the SMA wire given the electrical power applied across it and finding
the hysteresis relationship.

[. NEURAL NETWORK MODEL
Displacement Prediction

The first architecture was a simple feedforward neural network. This took the resistance difference and a ‘tag’
value as mput and tried 1o predict the displacement. The “tag’ is an input which takes a value of +2 for increasing
voltage and -2 for decreasing voltage. It takes a value of +2 when there is no change in voltage to ensure continuity
of signals. This input is to help the model know which part of the hysteresis is being followed. Essentially, the inputs
are the applied voltage and information regarding the dircction of the voltage (increasing or decreasing).

Our First model had an input layer, one hidden layer with 50 ncurons and an output layer (the performance
increased drastically as the number of neurons increased from 10 1o around 50, after 50, the performance improves
slightly). The Sccond model had an input layer, two hidden layers with 32 and 16 neurons and an output layer. Both
these models take resistance difference and “tag” value as input and outputs the predicted displacement.

The “tag” value we used for the previous architecture was determined based on the previous value of ‘voltage’.
This value is essentially derived from the previous input or “history’ of the SMA. This motivated us to choose
sequence models as our next architecture. This architecture takes the previous computed value (hidden state) and
propagates this to the next time step. This means that we can omit the ‘tag” value and give the previous input(s)
along with the current input for the model to make a prediction. We chose LSTM for this purpose.

-Our LSTM model took the current resistance difference and the previous 3 resistance differences as input to
make a prediction. This no Tonger uses the “tag’ value. The LSTM layer has 32 neurons. It has output is connected to
a hidden layer with 16 neurons which is connected to the output layer.
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The results of both architectures are in the table 1. We can see that while the mean-squarced loss and the
maximum crror (in mm) is comparable, the behavior that the architectures have learnt are very different. The simple
feedforward model’s graphs break the graph into multiple straight lines and learn that behavior. It models the
extremes ol the hysteresis curve very poorly (where the displacement changes for a given delta resistance change is
very different for the upper and lower hysteresis curve). The cyclically large errors observed near the saturation ends
of the hysteresis loops arce caused due to truncation errors. In comparison to that, the LSTM has a very smooth curve
and models the behavior of SMA well, even at the extreme ends.

TABLE L. Results of both architeeture for the displacement prediction

model total loss validation loss max _error
LSTM Disp.hdfs 0.015508362158942 0.018811862501833 0.343526840209961
simple 2 layer 0.015808121623479 0.015939184003781 0.514333724975586

simple | layer disp.hdfs  0.029591650577529 (0.029610273761495 0.604925155639648




Simple 1 _layer
3 Mielel Erros
[R— -
R
:,
a H
i, |
h B ai wma otk
OEsesvtion
HModel Prediction Total
[ e S L BT i ,
2% N !. ?\ ?\\ i‘r\
) \ :' Yoy
| | i o H
0y 1 ! i }‘ 1 ||’ 'l i
2 ! | ;
g L : i E-—- P-_im:wu values | | f
z H : e ACTuR valuns i
s Lo I i
) | P \ | o i
Eh i 1 iz | ] { ;
i ’ H J \Vj \ { 1/
s B £y L/ /
: —r—

] W06 200 300 400 300 630 700 HO0
Observations
Model Pradiction valication

&

Disgiacerens
e W
= ¥
ol

Preaicied Values
- Artual Vales

[ E 50 kS e i3 1w s
Chzservangns
Hysteresis
u Fosciictid Valuzy !
- Rerual vaises T i H
21 P
0
i i
ém
&
ar
i
i
3
3 b r

Resistance Diterance

Simple 2 layer

Dl ace e e

[ETrra

Mude Frediction Tota:

e 25
3, i ~
\\I 1y b
A % § H |
H i i
i | !
i i i
S T B B
b | ;
i ! ] i
1 b o Vo !
b i :
i s 1 |
4 WM MG 10 a8 e & Wb gon
LIfanraating

W 5 0 s oaon 12
Obstrvstuns

Hysteregis

§ e Breidicted Vot
Artual Yeluoy

gl

irg -2 =1
Beetance Ditferenice

Temperature Prediction

LSTM

Manl Ereor

Utipincerend

I Aga 15
Db vatiet

Mot Predicuion Total

30 “ \ "
5 i F% Y ™
=% I &g ik
‘ “'. |’ i | .| | !
| I : | i
i L af @ i :
- t & : i
RTINS Eo !
|2 : H [ | . | Freiched aes
. i i : 1 astial Wabes
LR S : i1 .
s ! 1 i | i ¢ :
! |t P
§ 1 1o bt
Lo : /
! 1
1 L
& tha wea 400 ¢ Ten e
Mogel Prodicton valizatms
R - irgarsed Yalues: e
R PR R
| 7 N
ne N ;
.\\ ;
204 EY 7
. b j‘
\. ;
i ;
3 !
17 he
16 , /./'
1 \:N- et
i 5 0 b 1E e 178
Ohseivis
Hystorgss
1z | = Peedited values
< Arhual Vakes
s
]

Resisians (Flencs

Similar to the displacement prediction, we use similar architectures for temperature prediction,
The first architecture was a simple feedforward neural network. This took the resistance. current and a tag”

value as input and tried to predict the temperature. Similar to displacement prediction. the “tag’ ts an input which
takes a value of +2 for increasing resistance and -2 for decreasing resistance. It takes a value of +2 when there is no
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change in resistance to ensure continuity of signals. This input is to help the model know which part of the hysteresis
is being followed.

We had two models for this purpose. Both models have | input layer, 2 hidden layers with 32 and 16 neurons
and an output layer. The difference between them is that one of them uses ambient temperature also as an input
while the other one does not,

The sccond architecture is LSTM. This takes resistance and current as input and doesn’t need the ‘tag’ value.
Similar to the displacement prediction, it uses current input and previous 3 inputs as the input for making a
prediction. The LSTM layer has 32 neurons. It's output is connected to a hidden layer with 16 neurons which 1s
connected to the output layer.

The results of both architectures are in the table. We can see that while the mean-squared loss and the maximum
crror (in degree celsius) is comparable, the behavior that the architectures have learnt are very different. The simple
feedforward model’s graphs break the graph into multiple straight lines and learns that behavior. It models the
extremes ol the hysteresis curve very. poorly (where the displacement change for a given delta resistance change is
very different tor the upper and lower hysteresis curve). The eyclically large errors observed near the saturation ends
of the hysteresis loops are caused due to truncation errors. In comparison to that, the LSTM has a very smooth curve
and models the behavior of SMA well, even at the extreme ends.

Table 2 Results of both architecture for the temperature prediction

model _total loss validation loss __max_error
LSTM with ta | 0.298160426028329 0.08660652843981 0.755020141601563
LSTM swithout ta 0.271552877681868 0.044232553626639 0.547409057617188
model with 1@ 0.327874886824191 0.085918510504067 0.633716583251953

moded without ta

L.STM with ta

0.3778T1336997487

0.06007460474968

0.544509887695313
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