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Abstract—Public key cryptography plays a vital role in many
information and communication systems for secure data trans-
action, authentication, identification, digital signature, and key
management purpose. Elliptic curve cryptography (ECC) is
widely used public key cryptographic algorithm. In this paper, we
propose a hardware-software codesign implementation of ECC
cipher. The algorithm has been modelled in C language. The
compute-intensive components have been identified for their effi-
cient hardware implementations. In the implementation, residue
number system (RNS) with projective coordinates have been
utilized for performing the required arithmetic operations. To
manage the hardware-software codeign in an integrated fashion
Xilinx platform studio tool and Virtex-5 xcSvfx70t device based
platform has been utilized. An application of the implementation
has been demonstrated for encryption of text and its respective
decryption over prime fields. The design is useful for providing
an adequate level of security for IoTs.

Index Terms—Elliptic curve cryptography (ECC), public-key
cryptography, Hardware-software codesign, residue number sys-
tem (RNS), IoT Security.

1. INTRODUCTION

Cyber physical system (CPS) as a collection of Internet
of things (loTs) provide an excellent platform for increas-
ingly connected physical world. This ecosystem enables an
integration of compute, network and physical things that
work independently to provide computation, communication,
information sharing, and control [1]. It brought advances in
personalized health care, traffic flow management, electric
power generation and many more. A number of cutting-edge
artificial intelligence techniques such as , deep learning, ma-
chine learning, cognitive computing, etc. have been developed
in order to realize the complete potential of CPS [2].

The rapid change in the internet-enabled technologies is said
to be the next generation of the internet. The Internet is slowly
becoming the active target for the hackers, in which billion
of things have been interconnected and are continuing to be
connected [3]. One of the significant obstacles in the ellicient
deployment of CPS-enabled devices is data security, which
can be for infrastructure, communication network, applications
and general-purpose systems [3]. The basic principle of secure
communications in CPS include authentication, availability,
privacy, integrity, confidentiality and non-repudiation. Here,
cryptography plays a vital role [4].

Recently elliptic curve cryptography (ECC) has evolved as
a potential candidate for providing security in the CPS. The

main advantage of ECC cipher over the existing public-key
ciphers is that it offers equal security for a smaller key size that
results in reduction of processing overhead [5]. Smaller key
leads to more compact implementation for a given security and
provides fast computation rate, power, memory and bandwidth
cfficient. To implement the ECC cipher, a hardware-software
codesign design approach provides an efficient solution. Here,
we get the advantages ol both; flexibility offered by soltware
and performance by realizing time-consuming arithmetic com-
ponent in hardware [6], [7].

In this paper an efficient implementation of the ECC algo-
rithm with hardware-software codesign approach is proposed.
This compact implementation provides an adequate level of
data security for IoTs. To perform modular arithmetic op-
erations of ECC, projective coordinates are utilized. Along
with it, the concept of residue number system (RNS) is used
for implementing modular arithmetic components like, point
addition, doubling and multiplications. A modelling of the
ECC has been performed in C language. The C code has been
profiled for obtaining the compute-intensive lunctions ol the
algorithm. The identified functions have been implemented in
VHDL language. To perform an integrated hardware-software
codesign, Xilinx platform studio tool with its ML-507 platform
have been utilized. The platform provides a PowerPC as an
hard processor in the FPGA device. The hardware components
of the algorithm have been implemented in the FPGA fabric.

Rest of this paper is organized as follows: Section Il is
used to discuss some of the the related work. In Section III, an
overview of the elliptic curve cryptography is given. A method
of the implementation and its overall architecture is proposed
in Section IV, Section V is used to provide experimental results
along with a comparison with an existing architecture. Finally,
conclusions are drawn in Section VL

II. RELATED WORK

In a survey of lightweight cryptography implementations,
software and hardware implementations of symmetric and
asymmetric ciphers have been compared [8]. In [9], emphasis
has been given to approaches for scalar multiplication over
elliptic curves. Implementation of a RNS version of [}, elliptic
curve point multiplier has been done in [10]. An implementa-
tion of elliptic curve point multiplication over GF(p) has been



provided in [11]. Here, the architecture for ECPM over GF(p)
based on RNS has been presented.

An implementation of an elliptic curve point multiplication
using digit-serial binary field operations has been done in
[12]. Selected RNS bases for modular multiplication have
been discussed in [13]. Research challenges in next-generation
residue number system architectures have been emphasized
in [14]. Related to a secure and efficient RNS software
implementation for elliptic curve cryptography, a design has
been provided in [15]. Implementation of text encryption using
Elliptic curve cryptography is discussed in [16]. This technigue
avoids the costly operation of mapping and the urge to share
the common lookup table between the sénder and receiver.
In Table I, a set of algorithms from NIST SP800-57 have
been compared by showing comparable key sizes in terms
of computational effort for cryptanalysis. It can be seen that
the key size required for ECC is comparably shorter, which
is valuable as it provides computational advantage for using
ECC with a shorter key length than a comparably secure RSA.
In next section, details of the ECC cipher has been described.

I1I. ELLIPTIC CURVE AND THE ELLIPTIC CURVE
CRYPTOGRAPHY

In cryptography, the variables and coefficients present in the
elliptic curve equation are bound to clements in a finite field,
which result in satisfying the axioms of the Abelian group
[4]. Cubic equation for elliptic curves take the form which is
known as Weiertrass equation and it is expressed as,

v+ axy + by = 2P rex? +drte (1)
Here a, b, ¢, d and e are the real numbers and x and y take
on any value in the real numbers. Here we have focused on
prime curve defined over [, where a cubic equation is used
in which the variables and coefficients take values in a set
of integers from 0 to (p — 1) and calculations are performed
over modulo p. The proposed work is based on elliptic curve
that is defined over F'p. The prime curves are best suitable for
software applications due to the fact that in prime curve there
is no requirement for extended bidding operations [4].

A. Elliptic Curve Over IF'p

The expression (1) can be modified in a form where
coefficients and variables are limited to Fip as given below,

y? mod p = (:;r:'q‘ + ax + bj mod p (2)

The set Fp(n,b) consist of all pair of integers that satisfy (2)
along with a point at infinity O. Here the coefficients a and
b and the variables x and y are all the elements of Fp. A
finite abelian group is defined based on the set [£p(a, b) given
that (z* 4 ax + b) mod p has no repeated factors which is
equivalent to the condition (4a® + 275?) mod p # 0 mod p.
The rules for addition over Ep(a,b) are defined in [4].

TABLE [
COMPARABLE KEY SIZES IN TERMS OF COMPUTATIONAL EFFORT FOR
CRYPTANALYSIS (NIST SP-800-37)

(Symmclric Key | Digital Signature | RSA ECC

Algorithm Algorithm {size of n in bits) | (modulus size in bits)
L=1024 N
80 N=160 1024 160-223
L=1024 i e
112 N=160 2048 224-255

L=1024
128 N=160 072 '25{‘?—383

L=1024
192 N=160 T30 384-511

N L=1024 .

256 N=160 15360 512

B. ECC Cryptography

As shown in Fig. 1, in order to form a cryptographic
system using elliptic curves, there is a need to find factors
for product of two prime numbers. Here in () = kP, where
Q, P e Epla,b) and k < p, it is relatively easy to compute
O given k and P but it is hard to determine k given Q and P.
This is the discrete logarithmic problem for elliptic curves.
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Fig. 1. Elliptic curve encryption/decryption.

Key exchange can be done through elliptic curves by
selecting a large number ¢ which is a prime number p and
also by selecting elliptic curve parameters, a and b. Next,
we pick a base point G = (z1,y1) in p(a,b) whose order
is a very large number n. The sender selects the private
key n, and then generates the public key Py = ny x G,
which is a point in I, (a,b). The receiver also does the
same. They both generate their own secret keys k = na % Pg
and k = ng x P, respectively. These calculations produce the
same results as,

naxPg=mnax(ng xG)=ngx(ng xG) =ngxPy (3)

In order to break this scheme, the attacker should be able to
compute k given G and kG. which is very difficult [4].

In encryption, first the encoding of the plaintext message
is done as (x,y) a point P,,. There is also a requirement
of the point G and an elliptic group FE,{a,b). Sender



selects his own private key and then generates a public
key. The sender selects a random positive integer k and
then produce the ciphertext C,, which consists of the pair
of points C,, = {kG P, +kPg}. The sender here has
chosen the receiver's public key. In decryption, receiver
multiplies the first point in the pair by his own private
key and subtracts the result from the second point as
P +kPg —np (kG) = P, + k (nBG) — np (kG) = P,,.
The security of ECC depends on how difficult it is to
determine k if kP and P are given, This difficulty is referred
as elliptic curve logarithmic problem [4].

One of the vital components of the ECC cipher is the scalar
multiplication. We have here implemented the scalar multipli-
cation using the binary method. This method has minimum
memory requirements and relatively easy implementation. The
pseudo code of binary method method is shown in Fig. 2. In
the pseudo Lode P significs the point and k is an [-bit integer

such that k& = E k;27. The binary method requires [ —1 point

doublings and ﬂ — 1 point additions, where [ is the length
and W is the hamming weight of the binary expansion of .

mtialize P, QO k, /
o€ o0

for € /-1 down to 0)
o€2X0

if (k=1) then
Qe+ P

end 1f

end for

The binary scalar multiplication method.

IV. A DESIGN APPROACH FOR ELLIPTIC CURVE
CRYPTOGRAPHY (ECC) IMPLEMENTATION

In this section a method for an efficient implementation
of the elliptic-curve cryptography (ECC) is described. This
method is based on an elliptic curve, where projective coor-
dinate and residue number system are utilized. The details of
the approach is described below.

A. Selection of an elliptic curve

To select an elliptic curve, the expression (1) can be

modified as,
2

=2 +az+b ’ (4)
Example of this elliptic curve equation is y? = 23 — z - 1 and
it is shown in Fig. 3. Here the values of ¢ and b ar nd -1

respectively. - \

As shown in Fig. 3, there is geometric description 3}'
addition on elliptic curve. In order to do the addition of
two points P and @ that lie on the curve, a line is drawn
through these, which intersects the curve at the third point of
intersection that is the mirror image of the points that lie on

Fig. 3. Arithmetic operations on the selected elliptic curve.

the same curve. The second geometric description shown in
Fig. 3. Here, a line interests the curve at infinity when it passes
through the point and the negative of the same point [4]. Now
we explain about the coordinate systems used in elliptic curve,
followed by residue number system used in our methodology.

B. Coordinate systems in elliptic curve

An elliptic curve point P can be represented through numer-
ous coordinate systems. The prominent coordinate systems that
can be used here are affine coordinate, projective coordinate,
mixed coordinate, Jacobian coordinate or modified Jacobian
coordinate[17]. The objective here is here to use an efficient
coordinate system for encryption and decryption so that the
elliptic curve Diffie-Hellman (ECDH) key exchange protocol
can be executed in the shortest time.

Here affine and projective coordinates are used. By this, the
point addition and point doubling can be performed easily. The
cost of point addition is 17 4+ 3M and for point doubling is
LI +4M, where I and M refer to number of inversions and
multiplications respectively. Point addition and point doubling
require modular inversion which is very expensive that can
be avoided using projective coordinate system also known as
conventional projective coordinates.

C. Residue Number System

Residue number systems (RNS) are considered because
of their inherited parallelism, modularity, fault tolerance and
localized carry propagation properties, Residue number Sys-
tems are based on congruence relation. If ¢ and r are the
quotient and remainder respectively, when a is divided bymie
@ = g.m + r then we have a = r(modm). Number r is called
residue of a with respect to m. The set of m smallest possible
values, (0,1,2,...,m — 1), that the residue may consider is
called the set of least positive residues modulo m [18].

“Frotocals (ECDH, ECDSA ™
EiGamal) e

Fig. 4. The elliptic curve cryptography (ECC) operational flow.



Assuming that we have a set (mq,ma, ms, c My ), of
n positive and pairwise relatively prime moduli, Let M be
the product of the moduli. Every number X < M has a
unique representation in the residue number system, which
is the set of residues | X|m, : 1 <i<N, Representations in
a system will not be unique until the moduli are not pairwise
relatively prime. The best moduli are probably prime numbers.
Modulus should simplify the implementation of the arithmetic
operations whatever may the choice be.

The standard arithmetic operations of addition, subtraction
and multiplication can be easily implemented with residue
notation depending on the choice of moduli [18]. The method
for converting from a conventional to residue representation
is known as forward conversion. Here, we divide each of the
given moduli, which is followed by collection of remainders.
One way of conversion from residue notation to conven-
tional notation is by assigning weights to the digits of the
residue representation then producing a conventional mixed-
radix representation. This representation can be converted in
any conventional form as per the need. Another way of doing
this is by usage of Chinese remainder representation (CRT).
This involves the extraction of a mixed-radix representation,

V. EXPERIMENTAL RESULTS

The algorithm is modeled in C language. To understand the
complexity associated with the compute-intensive arithmetic
operators, the program is profiled using GNU gprof profiler,
The details are provided in subsequent subsections,

A The Software Implementation of the ECC

Selection of an elliptic curve is one of the crucial steps
in modelling of ECC. The curve we have selected here is
y* mod p = (2% + az + b) mod p. The prime field p that is
selected should be a very large number so that there can be
a large elliptic group of points and each character can be
assigned with the point that lies on the curve.

The representation of the coordinates that lie on the curve
are in terms of affine coordinates and they are converted to
projective coordinates in order to avoid inversion which is
one of the time consuming process in prime field. If a point
P = (x,y) is given in affine coordinates, then the projective
coordinate representation is given by X = ;¥ = g =1.
Out of the various representations available, using Jacobian
coordinales representation, the affine representation of an ECC
is given by @ = X /Z% y =Y /Z% while the point at infinity
is given by (0,0,0) . The equation y2 = 2% + az + b now
becomesE (Fy) : Y2 = X®+aXZ*+b2Z5 . The EC point ad-
dition and doubling operations can be defined as follows[10].
Let, JDO = (X[]._ }/{';\ Z{)) 3 P]_ = (Xl,yl. Z[J S E(J{*;)) The
sum Py = (X5,Y3,Z5) = Ph+ P, € E (F}) can be computed
as follows. If Py = Py, then

Xy =M?2_-28
Ya=M(S—X,) —T )
Za =2V 74

Py=2p =

where, M = 3X,% + a2, §=4X,Y,2 and T = &V

On other hand, if Py # P,, then

X2 =R* - TW?

2Yo=VR - MW3 (6)
Zy = ZyZ\W

Pg:P{J-f-Pl:

where, M = Y02:° + Y1Zo*, R = ¥,2:% - vi2,%, T =
X0Z1 +X120%, W = X021 - X1 242, and V = TW? =9

Modulus operator is one of the primary operations per-
formed in the point operation block. RNS, having the ad-
vantage of performing parallel and fast modular arithmetic
operations is used. The moduli for these operations have
been sclected in such a way that they are prime numbers
and they have adequate range so that representations can be
unique and there should be even a balance between these.
All the arithmetic operations such as addition, subtraction and
multiplication have been implemented in RNS. The inversion
from RNS to decimal is done with the help of CRT which is
stated below [10]. .

Let M; = M /m; and assume that M s the multiplicative
inverse of ;ﬁf_ with respect to m; . The exact value, x that is the

L e
decimal value can be calculated as: 7 = > M;{ﬂﬁﬂ- 1.?:.‘i> .
TPty

=1

After all the operations have been performed, the projective
coordinates are converted back to affine. This can be under-
stood in a simpler way by Fig. 4. First the modular arithmetic
operations are performed followed by elliptic curve point
operations. Then scalar multiplication is performed. Qut of
the standard cryptographic protocols available such as elliptic
curve Diffie-Hellman (ECDH), ElGamal encryption and de-
cryption schemes, elliptical curve digital signature algorithm
(ECDSA), the one we have used here is ECDH. A detailed
description of the modelling is shown in Fig. 5.

B. Encryption Operation in ECC

Results for the encryption operation is shown in Fig. 6 and
7. First the prime field is selected which helps in determining
the Ey,(a,b). Next the database selection is done by the user
whether the message to be entered is in English or Hindi
language. This can be observed from Part 1 indicated in both
the figures 6 and 7. The public key of the receiver is already
known to the user indicated in Part 2. The message in entered.
The base-point which is a point lying on the curve is selected
along with the random integer which helps in the generation
of four points which are converted to their corresponding
character so that it cannot be recognized by the eavesdropper.
This can be seen from Part 3 and the output we get from the
system is indicated in Part 4 of the figures.

In order to encrypt and send a message to the receiver,
system requires a base point G whose order n is a very large
number, which is nGG = 0. The sender here selects a private
key n, and then generates a public key P4. For encryption
and sending a message, a random integer was selected which
produces ciphertext. The ciphertext produced involves point
multiplication and point addition operations, Point doubling is
the inherent operations of point multiplication.
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Fig. 6. Encryption of a given first plaintext.
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Fig. 7. Encryption of a given second plaintext.




The GNU gprof profiler is used to profile the implemented
code. A graphical representation of the time consumption for
the multiple operations is shown in Fig. 9. The generated
profiled data is provided to the GNU Valgrind callgraph
plotter, which is an instrumentation framework which help to
perform visual analysis [19]. A view of the plot is shown in
Fig. 8. Based on the profiled result, it has been found that
the modular arithmetic operations like, mod, inverse mod and
point multiplication operations take large amount of time. To
minimize the time consumption, these operations have been
identified for their hardware implementation.

puntaDneg, d, B, I, B, i)
CEELIYR

Fig. & A callgraph of the profiled C code.
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Fig. 9. A graphical representation of the time consumption for the multiple
operations,

It is evident from the above figure that point arithmetic
operation take large amount of time and hence they are
most suitablé candidates for hardware implementation in field-
programmable gate array (FPGA) device or in application-
specific integrated circuit (ASIC).

VI. CONCLUSION
The paper discussed an efficient implementation of elliptic
curve cryptography (ECC) public key cryptography algorithm.
The algorithm has been implemented in C language and
profiled using the GNU gprof profiler. The time-critical func-
tions have been implemented as custom-made components in

hardware. In the implementation, residue number system with
projective coordinates have been used to perform the required
arithmetic operations. These arithmetic operations converted
the input text into a set of coordinates which have been sent
to the receiver through the channel in the form of characters
so that they cannot be recognized by the eavesdropper. An
application has been provided for encryption and decryption
that can be useful security in IoTs.
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