Real-Time Vehicle Detection in Aerial Images
using Skip-connected Convolution Network with
Region Proposal Networks

No Author Given

No Institute Given

Abstract. Detection of objects in aerial images has gained significant
attention in recent years, due to its extensive needs in civilian and mil-
itary reconnaissance and surveillance applications. With the advent of
Unmanned Aerial Vehicles (UAV), the scope of performing such surveil-
lance task has increased. The small size of the objects in aerial images
makes it very difficult to detect them. Two-stage Region hased Convolu-
tional Neural Network framework for object detection has been proved
quite effective. The main problem with these frameworks is the low speed
as compared to the one class object detectors due to the computation
complexity in generating the region proposals. Region-based methods
suffer from poor localization of the objects that leads to a significant
number of false positives. This paper aims to provide a solution to the
problem faced in real-time vehicle detection in aerial images and videos.
The proposed approach used hyper maps generated by skip connected
Convolutional network. The hyper feature maps are then passed through
region proposal network to generate object like proposals accurately. The
issue of detecting objects similar to background is addressed by modi-
fying the loss function of the proposal network. The performance of the
proposed network has been evaluated on the publicly available VEDAI
dataset.

Keywords: Vehicle Detection - Hyper Maps - Skip connected - Region
Proposal Network(RPN) - Aerial Images - Aerial V ideos

1 Introduction

There is a growing need of aerial surveillance for civil and military purposes in
today’s world. This helps in maintaining the decorum ol an area while simulta-
neously ensuring the safety and security of the place. Aerial Surveillance using
drones/ Unmanned Aerial Vehicles(UAVs) have been proved to be very useful
in this context. Visual Inspection of areas is the most common practice used
in surveillance. Use of an UAV to monitor and stream videos to the base sta-
tion works as a better alternative as compared to the regular visual surveillance
through CCTV system. Videos taken from an higher altitude provides a better
visibility of the area. It also adds up to the advantage of tracking high speed
objects with ease without increasing its own pace.
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Real-time monitoring of unwanted and suspicious activities happening in an
area is an important concern. This involves Detection and Recognition of objects
followed by subsequent tracking of identified suspicious objects. Detection of
objects, such as, vehicles, animals, is a challenging task in aerial images due to
the small size of objects with respect to the complete frame. This often creates a
misclassification scenario for the detector. The misclassification mainly happens
due to the fact that there are several small surrounding structures and ambient
background objects that look very similar to the objects of interest from the high
altitude. Another major issue that makes the task of a detector more difficult is
the use of low resolution cameras with UAVs. This is mainly due the limitation
of the payload handling capacity of the drone.

Object detection in aerial images is performed by finding the most salient
features of the objects and use them for further processing. Many Saliency based
approaches have been developed which are effective to find small objects with
salient spectral features but did not perform well in real-time aerial videos.

The requirement of a real-time object detection has pushed the research
towards using deep learning approaches. It has paced up the performance of ob-
ject detection and recognition in real-time. Many Convolutional Neural Network
(CNN) based architectures have been proposed in recent works that can detect
objects with high accuracy. Along with high accuracy, the detectors has also
boosted the speed of detection. The convelutional framework of region proposal
networks helped in detecting very small objects even when the object is partially
occluded or looks similar to the background. The use of high resolution camera
payloads with the UAVs has substantially improved the quality of aerial image
datasets and consequently has reduced the chances of misclassification.

2 Related Works

Vehicle detection in aerial images has been an active area of research since last
three decades. Most of the object detection algorithms uses sliding window ap-
proach to generate candidate regions. The candidate regions which are similar
to the object properties are considered as the detected objects. But these ap-
proaches are very time-consuming and computationally heavy as these methods
use several different sized windows and slides over the entire image. Thus these
techniques are not well suited for real-time object detection in videos. Region
proposals provide computationally less complex solution for object detection.
Several region proposal methods have been developed and the performance has
improved a lot.

Many saliency based approaches [13] have been developed that produces good
results in images where number of objects is not very high and the foreground
objects are significantly different from the background. But these methods fail
to provide good results in real-time object detection problem.

To overcome the problem of dedicated feature extraction in images containing
multiple objects, several deep learning based approaches have been developed in
the last decade. Several CNN based frameworks [14] have been proposed that
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showed good results for object detection. Zhu et al. have developed a CNN archi-
tecture [3] based on the AlexNet framework with Selective Search with a simple
modification using empirically set threshold range. A CNN based GoogleNet ar-
chitecture has been adopted in [1] to detect objects in UCMerced dataset and
classify the objects based on a threshold based decision process. A CNN based
salient object detection has been proposed in [15], which uses nonlinear regres-
sion for refinement of saliency map generated.

The CNN based object detection architectures can be broadly classified
into two categories: one-stage and two-stage detectors. The one-stage detectors,
namely, YOLO (you only lock once), S8D (single shot multi-box detector) etc.,
provide very fast detection. But these detectors fail to detect small size objects.
The two-stage detectors, on the other hand, are very accurate but detect objects
at a subsequently low frame rate due to the high computational complexity.

CNN based object proposals classification have been proposed in [8]. which
uses region proposal network (RPN) that makes the object detection very ac-
curate. To incorporate location invariance in the model, position-sensitive score
maps for the proposals have been introduced in [12]. Due to the accurate object
detection, several researchers have adopted the concept of RPN in their work
[16], [2] on aerial images in DLR 3K and VEDAI [17] datasets. The accuracy
of two-stage object detection has been improved further by adopting the faster
RCNN like framework and modifying it by using hierarchical feature maps [7],
[6], [4]. A coupled R-CNN based vehicle proposal network has been proposed in
[18] that reported good accuracy in DLR-3K dataset.

The above mentioned two-stage classifiers perform well but are noticeably
slower as compared to the one-stage classifiers. YOLO [9] and SSD [10] provides
very fast detection by using only one CNN architecture for both classification
and localization of the objects. But these method fails to detect objects in aerial
images as the size of the objects are very small as compared to the size of
the proposals. To provide a solution to this problem, focal loss [11] has been
introduced by Lin et al. which involves a scaling factor that puts more weightage
to the hard classifiable objects as compared to the easily classifiable objects.

The current approaches for vehicle detection are mainly focused on aerial im-
ages and thus the speed factor is an issue in these detectors. Even the methods,
that performs fast detection of vehicles, are unable to produce very accurate
results. This sums up to the unavailability of a suitable vehicle detection frame-
work for real-time aerial videos. In the following section, a two-stage CNN based
framework have been proposed that addresses both the speed and accuracy issue.

3 Proposed Framework

The proposed object detection framework is a two-stage model that uses a skip
connected convolutional network followed by a region proposal network. The
framework generates features from the image using CNN. The features derived
are then used to generate multiple object-like regions with scores using a region
proposal network.
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The proposed framework as shown in Fig. 1 uses first 5 convolutional layers
of the ZF-Net architecture [19]. The features from the shallow layer provides
low level information about the images. The deeper layers compute more fine
details about the image. The features from the shallow layers and the deep
layers are merged into a single feature map to define new hyper feature map.
This incorporates low level details and deep level highly semantic representation
of data together.
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Fig. 1. Proposed Convolutional Hyper Maps based Framework

The output of each convolution layer is passed through Rectified Linear Unit
(ReLU) activation function to induce non-linearity in the data. The ReL.U out-
put is normalized using Local Response Normalization (LRN).The output of
corresponding units of the same convolution layers from different kernels are
used to normalize the value of the particular unit in the image.

The shallow and deep layers are first scaled to an intermediate size. The ReLU
normalized output of the third convolution layer is passed through an interme-
diate convolutional layer with 256 kernels. The ReLU output of the convdinterd
layer is normalized using LRN and concatenated with the Pool2 output, to de-
fine the shallow level features of the images. Similarly, the ReLU output of the
fourth convolution layer is passed through an intermediate convolutional layer
with 256 kernels to generate convdinterd output. These output is then passed
through the ReL.U nonlinear unit and then further normalized. These outputs
are merged with the normalized output of convd to generate deep feature maps.
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The deep and the shallow feature maps are merged together to define the Hyper
Maps that provide a complete description ol the images.

The hyper map contains 1024 feature maps. To define the region proposals,
sliding window of size 3 x 3 is traversed through the entire feature map. The
output of the sliding operation is passed through two sibling 1 % 1 convolution
layers to consider the features from all the kernels at each sliding window loca-
tion. For each of the sliding window location, one network computes the possible
locations of the proposals in terms of a vector, (g, 0, width, height), through
regression. The other convolution network performs classification of the objects
into predefined classes and generates a score for each of the predicted region.

The predicted regions are compared with the ground truth boxes in the
images. Intersection over Union (IoU) metric is used to define the similarity
of the predicted regions to the ground truth. The total loss at each epoch is
computed using a composite loss function that includes the loss of classification
as well as regression network. We have employed different loss function for the
two components in RPN. We have used Softmax classifier for calculation of
loss in score generation of each predicted region of the classification network.
Smooth L1 loss has been used to compute loss in the regression layer. The
smooth L1 and cross entropy loss functions have been described in Equation 3
and Equation 2 respectively. The overall loss function is defined in Equation 1
where L represents classification loss and Ly, represents regression loss. The
parameter & in Equation 1 represents a trade-off factor between the classification
and regression loss.

Liotal = Las + Oflr—’r-eg {J-)

0.5x2 , for|z| <1
Jr-‘ﬂ'e_r; — - p
|z| — 0.5 ,otherwise

Las = — »_ yilog(pi) (2)

1

The size of final hyper maps are large enough as compared to the deeper
convelutional layers. The size constraint reduces the computational complexity
of the algorithm and thus helps in improving the speed of the object detection
algorithm. But the increased size of the feature map adds up to the problem of
detection of more number of region proposals. Most of the proposals detected are
prone to be a part of the background and thus scope of detecting false positives
increases.

To handle the number false positive and solve the problem, the concept of
Focal Loss has been used as mentioned in [11]. The loss function has been de-
scribed in Equation 3. The parameter « decides on the scaling factor to keep or
neglect the hard classified examples.

FocalLoss(p;) = —(1 — pi) " log(pi) (3)

Thus in the Proposed Framework V2, the cross entropy loss function has been
replaced by the focal loss function. We have presented the experimental results
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for the two frameworks in the following section. The Proposed Framework V1
uses cross entropy loss and Proposed Framework V2 uses focal loss.

4 Experimental Results

The proposed architecture is trained using the publicly available VEDAI dataset.
The dataset consists of various backgrounds such as agrarian, rural and urban ar-
eas. The dataset is available in two different image sizes 512x512 and 1024 1024
with Annotation. For our experiment, we selected the VEDAI 1024 dataset that
contains 1268 images of size 1024x 1024 in .png format. We have used 935 images
for training the proposed model while the remaining images have been utilized
for testing the model. We have trained our model by using pre-trained weights
of a ZF-Net model obtained from training the ZF-Net on the ImageNet dataset.
The pre-trained ZF-Net model consist of lot of good lower level features which
are important in feature extraction for the RPN.

For the proposed framework, the values of the hyperparameters in the LRN
are taken as @ = 0.00005, # = 0.75 and & = 0. The value of the parameter
n is taken as 3. The hyperparameters for the focal loss computation is taken
as v = 2 and o = 0.25. This optimal pair of values provide a correct balance
between the hard classified and well classified classes. We have further used the
trained models to generate inference on acrial videos. The videos were captured
at 25 fps and the background in the videos were completely different from the
train image scenarios.

The proposed framework has been compared with Faster RCNN architecture.
The mean average precision (mAP) and the speed of the Faster RCNN, the
Proposed Framework V1 with cross entropy loss and the Proposed Framework
V2 with focal loss has been enlisted in Table 1.

Table 1. mAP and Detection Speed of different object detection frameworks

Method mAP[Speed(fps)
SSD-Inception V2 | 0.460 7
FFaster RCNN 0.454 5
Proposed Frameworkl|0.644 14
Proposed Framework?2| 0.659 14

The output of the Proposed Framework V1 on the VEDATI aerial images
is shown Fig. 2. The Framework V2 improves both the speed and accuracy of
detection. The Proposed Framework V2 can thus be used as a suitable model
for vehicle detection in acrial images and aerial videos.

5 Conclusion

In this paper, we have proposed a two-stage hierarchical region-based CNN
framework for detection of vehicles in aerial images and videos. The designed



Real-Time Vehicle Detection 7

Fig. 2. Object Detection Results on Test Images using Proposed Framework V1

hyper maps based framework produces very accurate and fast vehicle detection
result. Scalability of the object size in the videos has also been addressed using
the proposed framework due to the use of the shallow and deep layver features.
The Proposed Framework V1 produces very accurate results, but the speed of
operation is slow as compared to Proposed Framework V2. The inclusion of focal
loss in the Proposed Framework V2 helps in reducing the number of proposals
per frame by solving the class imbalance problem and thus improves the speed
of operation. Thus Proposed Framework V2 generates superior result in terms of
accuracy as well as speed and thus can be used as a suitable vehicle detector in
aerial videos. However, the proposed framework sometimes do not detect all the
vehicles in subsequent frames in aerial videos. The mAP can be further improved
to get address the problem and improve the accuracy of the detection algorithm.
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