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Abstract. Recently, there has been a huge demand for assistive technology for industrial,
commercial, automobile and societal applications. In such applications, there is a huge re-
quirement of an efficient and accurate system for automatic facial expression recognition
(FER). Therefore, FER has gained enormous interest among the computer vision researchers.
Although there has been a plethora of work available in the literature, automatic FER system
has not yet reached the desired level of robustness and performance. In most of these works,
there has been the dominance of appearance-based methods such as local binary pattern (LBP),
local directional pattern (LDP), local ternary pattern (LTP), gradient local ternary pattern
(GLTP) and improved local ternary pattern (IGLTP) have been shown to be very efficient and
accurate. In this paper, we have proposed a new descriptor called Improved Adaptive Local
Ternary Pattern (IALTP) for automatic FER. This new descriptor is an improved version of
ALTP which have been proved to be effective in face recognition. We have investigated ALTP
in more details and have proposed some improvements like the use of uniform patterns and
dimensionality reduction via principal component analysis (PCA) are proposed. The reduced
features are then classified using kernel extreme learning machine (K-ELM) classifier. In order
to validate the performance of the proposed method, experiments have been conducted on three
different FER datasets. The performance has been observed using well-known evaluation
measures such as accuracy, precision, recall, and F1-Score. We have compared our proposed
approach with some of the state-of-the-art works in literature and found it to be more accurate
and efficient.

Keywords: Facial Expression Recognition (FER), Adaptive Local Ternary Pat-
tern (ALTP), Improved Adaptive Local Ternary Pattern (IALTP), Principal
Component Analysis (PCA), and Kernel Extreme Learning Machine (K-ELM).

1 Introduction

Recently, there has been a huge demand for assistive technology for industrial. com-
mercial, automobile and societal applications. An efficient and accurate automatic
facial expression recognition (FER) system is often desired in bringing up such a
system to reality. This is because facial expression provides an important cue which
reveals the actual intention and state of mind of a person.

The techniques available in the literature for automatic FER can be broadly classi-
fied into two main categories: geometric-based methods and appearance-based meth-




ods as discussed in [1, 2]. Since our proposed scheme comes under the category of
appearance-based methods, a brief discussion on appearance-based approaches for
FER has been discussed below.

Popular techniques which come under appearance-based feature extraction meth-
ods include the use of local binary patterns (LBP), local ternary pattern (LTP), local
derivative pattern (LDP), local directional number pattern (LNDP), local directional
texture pattern, local directional ternary patter and so on. Deployment of LBP for FER
for the first time has been reported in [3] wherein the authors have reported a compre-
hensive study on the role of LBP for FER. Although LBP is very effective and com-
putationally efficient feature descriptor, it has been found to perform poorly under the
presence of non-monotonic illumination variation and random noise as even a small
change in grey-level values can easily change the LBP code. To overcome this limita-
tion different new techniques have been developed as well as different modification
of the original LBP has been done over the time. One such modification is Sobel-LBP
[4]. The performance of the operator has been investigated on a facial recognition
application and found to outperform the traditional L.BP operator in terms of recogni-
tion accuracy. However, this operator also fails in uniform and near-uniform regions
where it generates inconsistent patterns just like LBP as it also uses only two discrim-
ination levels. To overcome this LDP [5] was developed which employs a different
texture coding scheme to that of LBP, where directional edge response values are
used instead of grey-level intensity values. While LDP has been shown to outperform
LBP. it also tends to produce inconsistent patterns just like Sobel-LBP in uniform and
near-uniform regions due to similar reasons. In order to overcome the limitations of
LDP and Sobel-LBP. LTP was developed. LTP adds an extra discrimination level and
uses the ternary code as opposed to binary codes in LBP. More recently, a technique
called gradient local ternary pattern (GLTP) [6] has been developed for the purpose of
FER which combines Sobel operator with LTP operator. GLTP uses a three-level
discrimination ternary coding scheme like LTP of gradient magnitudes obtained after
Sobel operation to encode the texture of an image. As expected, GLTP has proved to
be more effective for FER task compared to the earlier discussed operators. Another
feature descriptor which was developed to overcome the limitations of the LBP is the
Weber local descriptor (WLD) [7]. An important property of WLD is that it is less
sensitive to noise and illumination changes and has been adopted for the purpose of
FER in [8]. A more recent face descriptor called local directional ternary pattern
(LDTP) has been developed for FER [2]. LDTP efficiently encodes information of
emotion-related features by using the directional information and ternary pattern.
Another recent method for FER which has been motivated by GLTP is improved
gradient local ternary patterns (IGLTP) proposed by the authors in [9]. The improve-
ments over GLTP includes the use of enhanced pre-processing, a more accurate
Scharr gradient operator, dimensionality reduction via PCA and facial component
extraction. A very recent work for FER has been proposed that makes use of multi-
gradient features and five level encoding and called Elongated Quinary Pattern (EQP)
[10] and the operator has been proved to be very effective for the purpose of FER.
The remainder of the paper is organized as follows: In section 2 we have provided a
brief description of the proposed methodology used in our work which has been fol-
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lowed by experimental results and discussion in section 3. Finally, section 4 con-
cludes the paper.

2 Proposed Methodology

The algorithmic pipeline used for the implementation of proposed automatic FER
consists of a sequence of steps which involves: Face detection and registration, fea-
ture extraction, feature dimensionality reduction and classification. All of these steps
have been discussed briefly below.

2.1 Face Detection and Registration

Face detection and registration step comprise of a face and landmark detection unit.
The face detector takes an input image and provides the location of human faces and
for this, we have used Viola and Jones frontal face detector [11] with cascade classifi-
er trained using Multi-block local binary pattern (MB-LBP) features. The trained
cascade classifier has been made available by [12]. The detected face is passed to the
facial landmark detection unit which marks the location of different landmarks on the
face. We have used Intraface [13], one of the widely used landmark detector. Finally,
using coordinates of different landmarks from the left and right eyes the positions of
the eyes center is calculated. Based on the location of the eye’s center the image is
rotated and in the subsequent step, the arca of interest is cropped and scaled to the
specified size in order to obtain the registered facial image.

2.2 Facial Feature Extraction and Dimensionality Reduction

The sequence of steps involved in the proposed IALTP facial feature descriptor has
been shown in Fig 2. For feature extraction, we have used a uniform version of Adap-
tive Local Ternary Pattern (ALTP) proposed in [14] for face recognition. Once the
Uniform ALTP coded lower and upper images are obtained they are divided into dif-
ferent cells from which histograms are calculated and concatenated to get the final
facial features. Finally, a dimensionality reduction via principal component analysis
(PCA) is applied to get the reduced features. All these steps have been further dis-
cussed below. The major motivation behind using the uniform version of ALTP
(called Uniform Adaptive Local Ternary Patterns) has been taken from the work of
[15] wherein an ALTP pattern is called uniform if it involves at most two circular 0-1
and 1-0 transitions. For example, patterns 00111000, LTTT1111, 00000000, and
11011111 are uniform, and patterns 01010000, 01001110, or 10101100 are not uni-
form. Using uniform patterns helps in reducing the length of the feature vector (ALTP
histogram) from 256-bins in original ALTP to 59-bins in uniform ALTP. This, in
turn, facilitates improving the performance of classifiers both in terms of accuracy
and computational burden without any loss in recognition accuracy. Furthermore,
ALTP has been used in comparison to other similar descriptors like LTP, GLTP, and
IGLTP because in all these descriptors the threshold t is set manually according to the
pixel value range which is not an optimal choice in real applications when we face
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different datasets. This has been demonstrated in the figure below. Thus, in order to
overcome this issue, ALTP makes use of Weber’s law [16] given in (1) which states
that the size of a just noticeable difference (i.e.Al) is a constant proportion of the orig-
inal stimulus value.

Al
Tk

Thus, in ALTP the threshold is automatically set using Weber’s law and thus the
method is called adaptive uniform local feature descriptor. The parameter k is known
as Weber’s parameter and is determined experimentally. The threshold is set accord-
ing to (2)

t=G,xk (2)
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-
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Fig. 1. Systematic representation of sequence of steps involved in the proposed IALTP

Once the Weber’s parameter k illustrated in (1) has been determined and threshold is
set according to (2), it is applied around a center pixel value G, of 3x3 pixel neigh-
borhoods throughout the input facial image as shown in Fig 1. (c). Neighbor pixels
falling in between G, + t and G, — t are quantized to 0, while those below G, — t to -1
and finally those above G, + t to 1 using (3). In (3). SaLrp are the quantized value of
the surrounding neighbors as shown in Fig. 1 (¢).The resulting eight Sa;rp values for
cach results in a much higher number of possible patterns when compared to that of
LBP therefore to reduce the dimensionality, each ALTP code is split into its positive
and negative parts and treated as individual codes as shown in Fig 1 (d). The formula
for converting each binary ALTP code to positive Pyrrp and negative Ny rp decimal
codes are given in (4) and (5) respectively and is shown in Fig 1. () and Fig. 1(f).

G2 G — 1,

SALTP(GC;GL') =40, GC -t < Gi < GC +t, (3)
+1,G; > G, + t.




Parrp = Zi7=0 Sp (SALTP(i)) x 2, 4)
Lifv>o0,
0, otherwise
Nyprp = ZZ:O Sy (SALTP (l)) x 2! (5)

1Lifv<o,
0, otherwise

5 ) = {
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Once the positive Py, ;p and negative Ny, 7 decimal coded images are available, these
are converted into their respective uniform version using a look-up table. In our case
using 8 sampling points, the number of different output labels for mapping for pat-
terns of 8 bits is 59 wherein out of 256 patterns 58 uniform patterns are given output
labels from 0-58 and the rest of the non-uniform patterns are grouped with a single
output label 59. Finally, the uniform positive and negative ALTP coded image is di-
vided into m x n regions as shown in Fig 1. (g). A positive (Hp,,.rp) and negative
(HNIALTP) IALTP histogram is computed for each region using (6) and (7).

Hpprp(D) = TH, 3N, fPuarrp(r,c), 1), (6)

HNIALTP(T) =X, Zévzlf(NALTP(r: 0,7 (7

1 a=rt

flan = {0 otherwise

In (6). M and N are the width and height of the uniform ALTP coded image whereas r
and ¢ denotes dimension of the encoded image. The value of t ranges from 0-58 (as
compared to 0-255 in case of ALTP) and for which the frequency of occurrence is
calculated using the above listed equations. Finally, the positive and negative histo-
grams for each region are concatenated together to form the feature vector as in Fig 1.
(h). Since the size of the feature vector obtained is quite high in dimension, therefore
we have proposed another improvement over traditional ALTP wherein we have
make the use of dimensionality reduction technique namely PCA as shown in Fig 1.
(i) to reduce the dimension of the feature vector.

23 Kernel Extreme Learning Machine (K-ELM) Classifier

In order to classify the facial attributes into their corresponding emotion label, we
have used kernel extreme learning machine (K-ELM) multi-class classifier in our
proposed work. K-ELLM is a popular classifier and is usually treated as the kernelized
variant of extreme learning machine (ELM) classitier used for fast training a Single
Layer Feed-Forward Neural Network (SLFN) [17]. The major benefit of using K-
ELM as compared to the traditional backpropagation algorithm based neural network
architecture is that the training using K-ELM does not involve any iteration and the
output weights are calculated using a direct solution. An ELM classifier invariably
makes use of a feature mapping function h(x) which helps in learning non-linearity.
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However, if the mapping function is not known, kernel technique can be applied into
ELM based on Mercers’ condition. For more details about K-ELM and necessary
mathematical formulations, we refer to work available in [18]. The output vector f(x)
of a kernel ELM can be represented as shown in (11).

. ¢ (x, x1)
- -1
£() = RGO = ReOHT (T + HHT) T = : (i+ ®) T ®
¢(x‘ 'xNK)
where

Plxy,x1) d(x, xn,)
¢® =HHT = : :
¢(xNk'x1) d)(xNk'xNk)

In this paper, Gaussian function is used as the kernel ¢ which is represented as in (9).

$xxy) = exp (— bzl ) ©)

3 Experimental Results and Discussion

In this section, we discuss our experimental setup and various experiments which
were performed on different FER datasets. All the experiments have been performed
using Matlab 20152 running on a windows platform with 64 GB RAM.

3.1 Datasets

In order to validate the performance of our proposed approach, we have used three
FER datasets in our experiments. The first one is the extended Cohn-Kanade (CK+)
dataset [19] which is an extended version of the CK dataset. In our experimental set-
up. we have used both 6 class and 7 class expression images which were obtained
from 309 labeled sequences selected from 106 subjects. For 6-class expression recog-
nition, the three most expressive images from each sequence were selected, resulting
in 927 images and for 7-class expression, the first image of neutral expression from
each of the 309 sequence was selected and added to the 6-class dataset, resulting in a
total of 1236 images. The second dataset used in the experiments is the recently in-
troduced Radbound Faces database (RFD) [20]. The dataset contains images of 67
subjects performing 8 facial expression (anger, disgust, fear, happiness. contemptu-
ous, sadness, surprise and neutral) with 3 gaze directions. However, in our expeti-
ments, we have only used frontal gaze direction images comprising 7 expressions
(anger, disgust, fear, happy. neutral, sad and surprise) for a total of 469 images. The
third dataset with which is the Japanese female facial Expression (JAFFE) dataset
[21]. The dataset contains 7 different prototypic facial expression images of 10 female
subject with a total of 213 images.




3.2 Parameter Selection

A number of parameters are usually involved in the design of an efficient FER sys-
tem. Therefore, an optimal value of these parameters is often desired to achieve good
recognition accuracy. Thus, to determine the optimal values of different parameters,
we have conducted a series of experiments. Firstly, we tried to determine the optimal
facial image size and cell-size and for this, we experimented with two different facial
image resolution of size 65 x 59 as in [9] and 147 x 108 pixels [22]. We experimented
with 8 different cell sizes in which the facial image is divided. The experiments were
performed on CK + 7 expression dataset with 10-fold cross validation strategy which
is repeated 10-times using K-ELM classifier with regularization parameter C and
kernel parameter y value of 100 and 200 respectively. The value of Weber’s parame-
ter k fixed in the experiment is 0.12. Table 1 and table 2 depicts the results of the
experiment for 65 x 59 and 147 x 108 resolution facial images respectively. Based on
the experimental results, we found that the facial image with a resolution of 147 x 108
and cell size of 9 x 8 performed well compared to other possible combinations of
image and cell size and therefore this value of facial image size and cell size has been
used in all our further experiments.

Table 1. Performance of different cell-size on 65 x 59 pixels facial image

\

165, 59] 5, 4] [6,5] 17,61 18,71 9, 8] [10,9] [11,10]  [12,11]
ﬁ:é" Ace. 10 951102 992402 989402  99.0:02  98.5£03  97.6204  96.5:0.5  96.7:0.1
Feature Dim. 19824 12980 9558 6608 5782 4248 2950 2950
Avg. Ace. 9935 9935 9935 99.19 99.03 98.30 97.17 97.01
Avg. Prec. 99.29 99.27 9933 99.12 98.91 98.66 97.88 97.57
Avg. Rec. 99.34 99.34 99.33 99.23 99.08 97.86 96.10 96.09
Avg. F1-S 99.32 9930 9933 99.17 98.99 98.24 96.94 96.76

Table 2. Performance of different cell-size on 147 x 108 pixels facial image

147, 108] 17, 6] 18,7] 19, 8] 10, 9] [11, 10] [12,11] [13,12] [14, 13]
?u\r/i G 10 99.1+0.2 99.110.2 99.3+0.2 98.9+0.2 99.2£0.1 99.0+0.2 98.6+0.2 98.7+0.2
Feature Dim. 40120 31860 24544 18172 15340 12744 10384 9440
Avg. Acc. 99.35 99.35 99.51 99:11 99.27 99.21 98.95 98.95
Avg. Prec. 99.30 99,33 99.46 99.04 99.26 99.15 99.09 98.75
Avg. Rec. 99.46 99.45 99.70 9931 99.28 99.38 98.98 99.05
Avg. FI-S 99.38 99.39 99.58 99,17 9927 99.26 99.03 98.89

In our second experiment, we tried to determine the optimal value of the Weber’s
parameter k for every dataset. The results of the experiments have been tabulated in
table 3- table 5. Our third experiment dealt with the determination of the K-ELM
parameters i.e. the optimal value of regularization coefficient C and kernel parameter
y. For this experiment, we used the CK+ 7 expression dataset with fixed image size,
cell size and k obtained in our earlier experiment. The range of both C and y have




been taken here is [1:10] in logarithmic scale of base 2. The result of the experiment
has been tabulated in table 6.

Table 3. Performance of different k on CK+ 7 Expression Database

K 0.01 0.03 0.06 0.09 0.12 0.15 0.18 0.21

Avg. Acc. 99.35 99.09 99.20 99.21 99.31 98.97 98.77 98.59

Table 4. Performance of different k on JAFFE 7 Expression Database

K 0.01 0.03 0.06 0.09 0.12 0.15 0.18 0.21

Avg. Acc. 95.53 94.97 95.44 94.52 92.86 93.32 92.71 91.45

Table 5. Performance of different k on RFD 7 Expression Database

K 0.01 0.03 0.06 0.09 0.12 0.15 0.18 0.21

Avg. Acc. 96.43 97.42 96.47 95.43 95.15 94.36 93.46 93.39

In our next experiment, we tried to determine the optimal number of principal com-
ponents for all the three FER datasets. To determine this, we fixed the value of all
other parameters involved to the optimal value determined earlier. The experimental
result for CK+ 7 expression dataset has been tabulated in table 7. Similar experiments
were also carried out for JAFFE and RFD dataset but we have not shown the results
due to limited paper length. From the experiments, we found that the optimal number
of principal components is 224 for CK+, 96 for JAFFE and 256 for RFD dataset.

Table 6. Determination of K-ELM Parameter

Performance Measure/ Datasets CK+ 7 Expressions

Avg. Accuracy 10- runs 99.47+0.08
Kernel Parameter (y) 1024
Regularization Parameter (C) 256

3.3 Results on CK+ Dataset

In order to determine the performance of the proposed FER pipeline on CK+ dataset
we performed 10-fold cross validation which was repeated 10 times. On CK+ 6 ex-
pression the accuracy achieved using uniform ALTP is 99.90+0.14 and that using
IALTP is 99.97+0.05. On CK+ 7 expression dataset the FER pipeline achieved accu-
racy of 99.43+0.2 and 99.49+0.14 using uniform ALTP and IALTP respectively.
Table 8 and table 9 depicts the result of our experiment using different performance
measure corresponding to the best 10-fold cross-validation for CK+ 6 and CK+ 7.

Table 7. Determination of no. of principal component of CK+ 7 expression dataset

No. of PCA 32 64 96 128 160 192 224 256




:l‘r’,i' Acc. 10 98.1:02  98.6£02 992402  99.4:0.1 994302 99.5+0.1 99.5£0.1 99 4:0.]
Avg. Acc. 98.30 98.87 99.43 99.60 99.60 99.60 99.68 99.51
Avg. Prec. 98.50 99.04 99.42 99.53 99.59 99.59 99.63 99.46
Avg. Rec. 98.30 99.03 99.64 99.75 99.74 99.71 99.79 99.70
Avg. FI1-S 98.40 99.03 99.53 99.64 99.66 99.65 99.71 99.58
Table 8. Performance of IALTP (CK+ 6 Expressions)
Actual/Predicted An Di Fe Ha Sa Su Recall
An 135 0 0 0 0 0 100
Di 0 177 0 0 100
ke 0 0 75 0 0 0 100
Ha 0 0 0 207 0 0 100
Sa 0 0 0 0 84 0 100
Su 0 0 0 0 0 249 100
Precision 100 100 100 100 100 100
F1-Score 100 100 100 100 100 100

Avg. Performance: recall =100, precision =100, accuracy =100, F1-Score = 100

Table 9. Performance of IALTP (CK+ 7 Expressions)

Actual/Predicted An Di Fe Ha Ne Sa Su Recall

An 135 0 0 0 0 100
Di 0 177 0 0 0 0 0 100
Fe 0 0 75 0 0 100
Ha 0 0 0 207 0 0 100
Ne 1 0 0 0 307 1 0 99.35
Sa 0 0 0 0 0 84 0 100
Su 0 0 0 0 2 0 247 99.20

Precision 9926 100 100 100 9935 9882 100

F1-Score 99.63 100 100 100 9935 994] 99.60

Avg. Performance: recall =99.79, precision =99.63. accuracy =99.68, F1-Score = 99 71

3.4 Results on Jaffe Dataset

In order to determine the performance of the proposed FER pipeline on JAFFE we
again performed the experiment using the similar setup as above. On JAFFE 6 ex-
pression the accuracy achieved using TALTP is 95.77+0.95 and that using
IALTP+PCA is 95.93+0.80. On JAFFE 7 expression dataset the FER pipeline
achieved accuracy of 95.53+0.68 and 95.92+0.98 using IALTP and IALTP+PCA
respectively. The performance of the best 10-fold cross-validation in terms of differ-
ent measures has been shown in table 10 and table 11.
Table 10. Performance of IAL TP (JAFFE 6 Expressions)
Actual/Predicted An Di Fe Ha Sa Su Recall

An 30 0 0 0 0 0 100




Di 0 28 0 0 1 0 96.55
Fe 0 31 0 1 96.88
Ha 0 0 31 0 100
Sa 0 1 1 29 0 93.55
Su 0 0 0 1 0 29 96.67
Precision 100 100 9688 9394 9667 96.67
F1-Score 100 9825 96.88 96.88 95.08  96.67

Avg. Performance: recall =97.27, precision =97.36, accuracy =97.27, F1-Score = 97.29

Table 11. Performance of IALTP (JAFFE 7 Expressions)

Actual/Predicted An Di Fe Ha Ne Sa Su Recall
An 30 0 0 0 0 0 0 100
Di 0 28 0 0 0 1 0 96.55
Fe 0 0 31 0 0 0 1 96.88
Ha 0 0 0 3] 0 0 0 100
Ne 0 0 0 0 30 0 0 100
Sa 0 0 1 1 0 29 0 93.55
Su 0 0 0 1 0 0 29 96.67
Precision 100 100 96.88 9394 100 96.67 96.67
F1-Score 100 9825 9688 9688 100 9508 96.67

Avg. Performance: recall =97.66, precision =97.74, accuracy =97.65, F1-Score = 97.68

3.5 Results on RFD Dataset

Performance of the proposed FER pipeline on RFD dataset again in terms of different
performance measures corresponding to best 10-fold cross-validation run has been
tabulated in table 12. The overall average accuracy of the 10 runs of the 10-Cross
validation using uniform ALTP and IALTP is 97.440.4 and 97.8+0.4 respectively.

Table 12. Performance of IALTP (RFD 7 Expressions)

Actual/Predicted An Di Fe Ha Ne Sa Su Recall
An 66 0 0 1 0 98.51
Di 0 67 0 0 0 0 0 100
Fe 0 0 67 0 0 0 0 100
Ha 0 0 0 67 0 0 0 100
Ne 0 0 0 0 67 0 0 100
Sa 1 0 1 0 4 61 0 91.04
Su 0 0 0 0 0 0 67 100
Precision 98.51 100 9853 100 9437 9839 100
F1-Score 98.51 100 9926 100 97.10 94.57 100

Avg. Performance: recall =98.51, precision =98.54, accuracy =98.51, F1-Score = 98.49

Comparison result of the proposed FER framework with other state-of-the-art work
available in literature has been shown in table 13. From the table we find that our
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proposed approach has achieved superior performance and is more accurate and effec-
tive.

Table 13. Comparison of recognition accuracy (%) on CK+ and RFD Dataset

CK+ 6 CK+ 7 RFD 7 JAFFE 6 JAFFE 7
Method " . " . "

Expression Expression Expression  Expression Expression
LBP [23] 90.1 83.3 NA
LDP[23] 93.7 88.4 --- - NA
LTP[23] 93.6 88.9 - - NA
GLTP[6] 972 91.7 - 77.0 74.4
Improved GLTP[9] 99.3 97.6 - 83.3 81.7
HOG[22] 95.8 94.3 94.9
Uniform ALTP 99.9 99.4 97.4 95.8 95,5!
IALTP Proposed 100 99.5 97.8 9519 959,

4 Conclusion

In the presented paper, we have proposed a new facial feature descriptor named im-
proved adaptive local ternary pattern (IALTP). The proposed descriptor is a modified
version of ALTP wherein we have investigated ALTP from FER perspective and
proposed some improvements like the use of uniform ALTP patterns and dimension-
ality reduction via principal component analysis. We have used K-ELM classifier for
classifying the facial expressions. The performance of the proposed approach has
been validated using 10-fold cross validation which has been repeated 10 times for a
fair comparison with the existing works. The experiments have been performed on
three FER datasets viz. CK+, JAFFE, and RFD and performance have been observed
using precision, recall, accuracy, and f1-score measures. We have also compared the
performance of our approach with some of the state-of-the-art works available in
literature and our performance measure clearly indicate that the proposed method
outperforms other methods in terms of accuracy and efficiency.
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