FPGA Based Implementation of Linear SVM for
Facial Expression Classification

2 Sumeet Saurav

'Academy of Scientific & Innovative Research
2 CSIR-Central Electronics Engineering Research Institute
Pilani, India
sumeetssaurav@gmail.com

Abstract— This work presents a Field Programmable Gate
Array (FPGA) based hardware efficient implementation of One-
Versus-All (OVA) linear Support Vector Machine (SVM)
classifier for classifying the facial expressions on an individual.
The motivation is to achieve a real-time classification of the facial
expressions of an individual into three different states viz., neutral,
happy, and pain so that the designed architecture could be used as
a part of an embedded platform based FER system for the purpose
of monitoring patients in hospitals. Thus, the design challenge is to
achieve classification accuracy equivalent to the software-based
implementation with a multi-fold improvement in the execution
time. The acceleration in the execution time of the designed
classifier has been achieved utilizing the parallelism and pipelining
concepts of the VLSI architecture design. Moreover, to reduce the
computational cost and boost the execution speed of the
architecture we have adopted the fixed-point data format (Q24.16)
in our design. The classifier has been trained offline and the
parameters of the trained classifier have been used to perform
testing using the designed architecture on hardware. The designed
architecture after synthesis operates at a maximum clock
frequency of 241.55 MHz and is resource efficient. Classification
accuracy of 98.50% equivalent to its software counterpart has
been achieved on simulating the designed architecture with
different test images. Thus, the designed classifier architecture
shows good performance in terms of speed, area, and accuracy,
and is suitable for real-time classification of the facial expressions.

Keywords— Support Vector Machines, VLSI Architectures,
FPGA, AdaBoost, Gabor filter.

L INTRODUCTION

In today’s world of automation, there has been a huge
requirement of Facial Expression Recognition (FER) based
technology and thus it has become an important area of rescarch
among the researchers of the Computer Vision community. The
FER technology has a plethora of applications in areas related
with human-computer interfaces; patient monitoring, blind
person assistance; human emotion analysis [1]; neuroscience,
psychology, and cognitive sciences [2]; access control and
surveillance [3]; and communication, personality, and child
development [4]. Morcover, recent rapid advancement in the
Machine Learning and deep learning algorithms has further
widened the areas of research in the design of an efficient FER
system. However, designing such a system is not a trivial job
because of a number of issues and researchers all around the

Ravi Saini, Sanjay Singh
IC Design Group
CSIR-Central Electronics Engineering Research Institute
Pilani, India
{ravi, sanjay}.csirceeri@gmail.com

world are trying to mitigate these issues and desired to have
human-level performance in the FER based systems.

Over the decades, there have been numerous works reported
in the literature dealing with the demonstration of FER system
and its practical applications. However, most of these works
have targeted towards enhancing the accuracy of these systems
without keeping into consideration the real-time constraint
which is often the desired requirement.

One of the most important ingredients of any FER system is
the classification unit which is used to assign labels to different
facial expressions and for this SVM classifier is often considered
to the best candidate. Therefore, in this work, we have designed
an optimal architecture of an OVA linear SVM classifier to
facilitate real-time classification of the facial expressions of an
individual.

Most of the available literature on SVM listed in [5]-[12],
have discussed their software-based implementation. The first
significant work related to the hardwarc-based implementation
of SVM has been reported in [13]. A digital architecture for both
the training and testing phase of the SVM using both linear and
non-linear (RBF) kernels have been reported. Although, the
designed architecture implemented on Xilinx Virtex-1l FPGA
fulfilled its objectives but suffers from two major drawbacks.
Firstly, the FPGA resource utilization is too high and secondly.
the processing speed (35.3 MHz) obtained is not acceptable for
many applications demanding real-time performance. In order to
overcome the issues of high FPGA resource utilization, the
authors in [14] proposed a hardware-based SVM classification
architecture targeted to FPGA using the Logarithmic Number
System (LNS). The authors have claimed to save considerable
hardware resources with no significant loss in classification
accuracy, but difficulties lie in converting real numbers to their
logarithmic equivalent representation. An FPGA friendly
implementation of a Gaussian Radial Basis SVM well suited to
the classification of grayscale images has been discussed in [15].
The implementation achieved 88.6% detection accuracy
(equivalent to software-based implementation) in gender
classification. A parallel hardware architecture based FPGA
implementation of SVM for the video shot boundary detection
application have been discussed in [16]. For brain-computer
interface application, an FPGA based implementation of lincar
kernel support vector machines is reported in [17]. The authors
have demonstrated that their hardware model achieved a

classification rate higher than 95% with the fixed-point data
format. Incorporating the posterior probability for increasing the
performance of the classifier, the authors in [1 8] have proposed
an FPGA implementation of a multi-class support vector
machine classifier. For an embedded automotive applications,
design of a hardware-friendly support vector machine classifier
has been discussed in [19]. In [20], FPGA simulation of linear
and non-linear support vector machine has been discussed.
Parallelization has been employed in the designed architecture
and design has been done using function blocks of the System
Generator. According to their simulation results, the maximum
frequency of 202.840 MHz in linear classification, and
classification accuracy of 98.67% in nonlinear one has been
achieved. Support Vector Machine implementation for both
classification and regression has been discussed in [21]. In[22],
the authors have proposed a hardware architecture of SVM
classifier intended for vision applications on FPGA platform.
Moreover, with the advent of GPUs (Graphical Processing
Units), exploiting its usefulness the authors in [23] have
proposed FPGA-GPU based architecture for kernel SVM
pedestrian detection. Here, FPGA has been used for feature
selection and classification is performed using GPU.

From the algorithmic perspective, SVMs comes under the
category of supervised learning algorithms and comprises of a
separate training and a test phase. The online training of the
SVM classifier is computationally expensive and for
applications like FER, it is often not a desirable requirement (as
here we are more interested in getting the classification result
which comes by performing prediction using the trained SVM
model). Therefore, similar to other reported works we also
performed SVM classifier training offline in a software
environment,

The remaining part of this paper is organized as follows: In
section II, we give an introduction and mathematical details of
the linear SVM classifier. Section III deals with the software
implementation of the algorithm including both training and
testing. A detailed description of the proposed hardware
architecture is discussed in section I'V. In section V simulation
and synthesis results have been discussed which is followed by
a conclusion in section VI.

[I. OVERVIEW OF LINEAR SVM CLASSIFIER

Support Vector Machines (SVM) is a technique of
classification and regression introduced in the 1990s by Vapnik
[24]. The naive implementation of SVM was for binary
classification which was later extended for multi-class
classification problem. The SVM can be used for classifying
linear as well as non-linear data. Since this work is related to
linear SVM classification, so all further discussion will be only
for linear SVM.

In a linear classification problem it is assumed that the
feature set belonging to different classes are linearly separable
and the objective is to find an optimal separating hyperplane
with maximum margin [25]. The decision function obtained is
linear in nature. To understand its concept, let us consider a two
class problem consisting of M training samples each having m-
dimensional feature set. Let x; (1=1...M) is m-dimensional
training inputs belonging to Classl or Class2 with the

associated labels yi =1 for Class! and yi= -1 for Class2 as shown
in Fig. 1.

Class1
L 4
@ @ o

. Margin
S2/Hwll

B Class2

Fig. 1. Optimal Separating Hyperplane with Maximum Margin and Slack
Variables

The decision function of the linear support vector machine is
defined by (1).

d(x)=y'x+b (1)
where, w is an m-dimensional vector, b is a bias term, and for
i=1...M, the value of the decision function is given by (2).

7

_ >()ﬁ)ry_=l,
w.’(-{'b !

(2)
< Oﬁ)ry‘ = =]

To control separability at the boundary inequalities of (3)
are considered.
=1 for Y = 15

wrx+b (3)
< —1fory» =—1

The above cquation can be also written as (4).

¥ (W)C,+b)21 Fori=1 ..M. (4)
The hyperplane separating the training data into two classes
is given by (5).

D(x):wrx+b:c Jor —l<c<l (5)

There are an infinite number of decision functions which
satisfy the separating hyperplanes. The optimal separating
hyperplane is obtained by solving the dual Lagrange problem
of (6).

M 1 7
Maximize Ld(a) = ZCZ‘ = E Z oo ,yliji x, ©

INES]
Subject ’OZ)’a =0, 0S¢y <C for i=1..M.

Here C, is called the margin parameter that determines the
trade-off between the maximization of the margin and the

ninimization of the classification error. By solving the dual
Lagrange function, « is obtained. Subsequently the value of w
and b is also achieved using (7) and (8).

M

2 G0V 5% (7

i

wo==

b=y —w x, for i=1.5. (8)

In (8), S is the set of support vector indices. Now, we can
classify an unknown data x, by utilizing (7) and (8) into the
decision function of (1), which yield to (9).

,
D)= oV x; X+b (9)

The classification of unknown data x into class 1 or class 2
depending upon the value of decision function D(x) is done as
shown in (10). If D(x) = 0, x is on the boundary and thus is
unclassifiable

class 1 if D(x) >0
x € (10)
class 2 if D(x) <O

As mentioned earlier, the naive implementation of SVM
was for binary classification. Later on it was extended to solve
multi-class classification problem using different approaches
like One-Versus-All Method, One-Versus-One or Pairwise
Classifiers Method, Error-correcting Output Code (ECOC)
Method, and All Classes at Once Method [20]. In case of OVA,
the number of binary SVM classifier is equal to the number of
classes available in the data. However, as shown in the Fig. 2
below, there are some unclassified regions whose class label
cannot be determined.

D1(x)=0
Iy

D3(x) =0

b2(x)=0 Class3

Class2

Fig. 2. Unclassified Regions in OVA Multi-class Classification Approach

In order to overcome this limitation of the OVA approach,

OVO also known as pairwise classifiers approach was proposed

by [26]. In this approach to solve n class problem, 2D pinar
p 5 Yy

classifiers will be formed. This method compared to OVA is
better, however there are still some unclassified regions as
shown in the Fig. 3. Here, for classifying an input data x, in each
binary decision function d;;(x) a class is selected, and finally
the one with the most votes is selected as desired class [20].

4

Du(x) =0
Class1

Dix(x)=0

Class2 Class3

Doz =0

Fig. 3. Unclassified Regions in OVO Multi-class Classification Approach

Clearly, there is a trade-off between accuracy and
computational resources while making a choice between OVO
and OVA multi-class classification strategy. However,
depending on the application at hand like FER in our case the
classification accuracy does not get that much hindered while
opting OVA with an added advantage of reduction in the
computational resources. Keeping all thesc factors into
consideration, we opted OVA based multi-class SVM classifier
in our work.

III. SOFTWARE SIMULATION OF OVA LINEAR SVM

Features required for training and testing the performance
of the classifier is obtained from the training and test image
samples of three facial expressions by performing a scries of
steps whose details can be found in our previous work [27]. This
basically includes the following sequence of steps: Face
detection and registration, feature extraction, and feature
selection. For feature extraction we have used Gabor filter.
Since the feature obtained from Gabor filters arc of high-
dimension most of which are redundant, therefore we have used
a feature sclection scheme using AdaBoost to select optimal
features. The extracted features are fed to the SVM classifier
which assigns a label to the given facial image. It must be noted
here that the performance of classifier depends on the quality of
the discriminate features obtained from the feature extraction
step.

Distribution of the dataset used in our experiments into
training and test samples have been shown in Table [. Here we
have used our own database which consists of 56 ncutral, 77
happy and 63 pain faces of different individuals whose
corresponding cropped sample images is shown in Fig. 4.

TABLE L DISTRIBUTION OF TRAINING AND TEST IMAGE SAMPLES
S.No. | Expressions Training set size Test sef size
1 Neutral 40 16
2 Happy 55 22
3 Pain 40 23

Using the AdaBoost selected features, we performed the
classifier training and testing using LibSVM library [28] in the
Matlab environment. Here, the objective was to achieve

minimum classification error by varying the value of the margin
parameter ‘C’. The analysis result of the classifier
corresponding to margin parameter C having the maximum
classification accuracy is shown in Table II.

(a)

(b)

(©)

Fig. 4. Sample Images (a) Neutal (b) Happy (c) Pain
TABLE 1L TRAINED CLASSIFIER PARAMETER FOR C=0.039
S.No Class 1 Class 2 Class 3
No. of SVs 29 37 33
Bias -1.4608 0.6985 -0.4154
Accuracy (%) 98.50

For our proposed architecture of the testing phase of the
OVA linear SVM, we used the parameters obtained from the
classifier trained with margin parameter C= 0.039. This is
because for this value of the margin parameter the number of
SVs is the least and the accuracy is equivalent to the classifier
trained with other values of the margin parameter. The
confusion matrix corresponding to the selected classifier (with
C=0.039) is shown in Table I1I.

TABLE 111 CONFUSION MATRIX OF THE TRAINED CLASSIFIER
Neutral Happy Pain
Neutral 100 0 0
Happy 4.55 95.45 0
Pain 0 0 100
Average 98.50

IV. PROPOSED ARCHITECTURE OF OVA LINEAR SVM

The block diagram of the proposed architecture of Linear
SVM classifier is shown in Fig. 4. Here, we have designed
architecture which results in the computation of the decision
function given by (9) and the classification function given by
(10). The architecture can be divided into three different design
units depending on the functionality. The first unit performs
inner product operation between the support vectors and test
image features. The second part performs dot product operation
between the previously computed results the stored ay values.
Finally, utilizing the result of the second unit the last unit of the
architecture takes a decision regarding the label of the test
image. To perform inter and intra coordination of various design
units, a controller has been used in the architecture.

A. Inner Product Computation Unit

As shown in Fig. 4, four blocks properly triggered with
different control signals are used in the inner product
computation unit. These are the support vector storage blocks,
input test feature storage block, Kernel Computation block, and
Counters.

Three SVs storage blocks have been used in the design for
storing SVs of three different classes. These are named as
Class!_SVs, Class2_SVs and Class3_SVs corresponding to
their respective classes. The blocks have been designed using
FPGA’s block RAMs. Systematic representation of the
Classl_SVs has been shown in Fig. 6. As shown in the figure,
we have stored the first 13 columns cach of size Sl in
SV1 BRAMI, the next 13 columns in SVI_BRAM2 and finally
the rest of the 3 columns in SV1_BRAM3. Same techniques
have also been used for the storage of SVs for the other two
classes. Thus, the depth of each block RAM is 663 (13 x 51)
with corresponding width of 24-bits (in Q24.16 format). From
the figure, we also find that in the designed architecture the
contents of SV1_BRAMI to SVI_BRAM3 are accessed in
parallel with BRAMI out denoting the output from
SV1 BRAMI and so on. Similar techniques have also been
employed for the storage of SVs for the other two classes. Data
is read from each block RAM sequentially and the address is
given by counter (count663) which is controlled by the
controller.

The input test feature storage block represented by
Test_Feature in the designed architecture is used for the purpose
of storing test features obtained after feature extraction and
selection steps. Since the selected feature is of 1x51 dimension,
therefore the depth of the block RAM used is 51 with the
corresponding width of 24-bits in Q24.16 fixed-point data
format. A counter (count51) is used to read the contents of this
block.

The kernel computation block as shown in Fig. 7, performs
inner product operation between the support vectors and input
test features. Three such blocks have been used in the designed
architecture (Class] KC to Class3 _KC) corresponding to three
different classes. As shown in the figure, the block takes three
SVs from the support vector storage block (BRAMI outl to
BRAM3 outl) and input test feature from the Test Feature
block to perform inner product operation for three different
columns of the SVs matrix in parallel. This block consists of
three multipliers, three adders, and three accumulators. Each
multiplier takes two input, one coming from support vector
storage block (BRAMI outl) and other coming from the
Test_Feature block (Input data). The multiplier output then
becomes once input of the adder (ADDI1) whose other input
comes from the accumulator (ACC1). The final output obtained
is of 48-bits denoted by accl_outl. Similarly, other two outputs
from the kernel computation block is acc2_outl and acc3 outl.

B. Dot Product Computation Unit

As shown in Fig. 4, the dot product computation unit of the
designed architecture consists of a temporary storage block,
Yalpha value storage block, decision value computation block,
some counters. A set of control signals generated by the
controller is used to facilitate proper coordination between the
blocks.

Start reset clock

FSM Controller

N

-
) g | = <
& = < ERE = i gl8 lg |= wlien
i e R = SlIEIRIE 12 B |- 2 2
Slsle 21202 15l 205 |2 (20 8e 2Bl Blels 2] g
g e |EBI2 5|0 |22 8|2 (515 [E|B|2 18] 82
= {8 | & = 1@ |2 20 5 = 4 2l |&18 5 ! [e 53 [3] ©
CHE | S K Blg'l =2 | & e 1S s |s s i |= il 2
= i Blg S |® | = S gle= e |2 § |8 |&' (28 |un sl 8
5 : =8 |= =
g & ‘:[S =’ § £33 S « 7 -
Y. Y. __N..Y_N A & 4 . 2 . Y. V.. Y. Y_Y_N._NXY_Y_XY N
— o
T2 %
2,585, ¢
yelsddele
rst_count_add, rst_count663
en_count_add Counters ount663
coumts licounl l3£coumli Lcounl(}()}
‘ e e Y Y Y e e ey
. - =
I g, 2 ig § £ g4 =4
! 5 = 2 5 g S, = i
1 = E] g g E = =
2. > el =
| ¥ =
: I Class2_SVs l Test_Feature 1 Class3_SVs ’ 8 :
: gl = 9 ol e @ s
2 g 21 8| 8 =
1 : | | i =3
1 = = = i S = =11 1
! 2l = z ot
1 Ev v B v v 2V v Zve v il
] W
4 \ Class2_KC] I Class3_KC 1 =
| =
ki
i =
; 3, X
H o 154
1 2y v . 4 v =
i ‘ . .
1 Class1_TS]‘* “““““ Class3_TS J*‘l g :
: Z Y ! r = t
; & read_reg_file 2 read_reg_[ilc g‘ {
L g g o El S !
18 v = E] g e 2 O
| B 2 2o T E . !
. Class1_ay f:" j}, Bias2 e Class3_ay é! Bias3 = :
LS o s i ¥ <
'8 = g &~ o
; =
i Classl_DVC } ! Class2_DVC] [Class3_DVC l = :
! i
S Jvilli%.»:‘_ o oo s et s s 8 S e e ceed
classi_out Decision Function class3_out
And <
Classification
Labcll, Lable2 or
Label3

Fig. 5. Sequential Fixed-Point VLSI Architecture of OVA Linear SVM Classifier

| SUPPORT VECTORS '

Class1_SVs

l _ _(39.).(_5_1_)_ P l ‘ ‘acctoun
Il I[svi BRAMI o | BrAM1_outs ot
1 13X51 b 7 . ‘L—*;*
BRAMZ2_out1 sech ot

I [svi_BrAM2 Vo | e 72
| | : 13X51 : | :“7‘/—"‘_’ |

| ! SV1I_BRAM3 : BRAM3 outt T T - T T T T T T T T T T

! 24

I | : paal : | | Fig. 7. Kernel Computation Block
== = = ==

Temporary storage block is used to store the intermediate
Fig. 6. Support Vector Storage Block. results obtained after the kernel computation operation. It

basically consists of a register file with access to read and write
data. Since we are performing kernel computation of three
classes in parallel, therefore three temporary storage blocks
(Class1_TS to Class3_TS) have been used each storing
intermediate results from their corresponding kernel
computation blocks. Block diagram representation of the
temporary storage block has been shown in Fig. 8, where the
width of the register file is 39 with a depth of 24-bits. An
address sequence generator is used to generate the correct
scquence of addresses where the intermediate results need to be
stored. The address sequence generator generates three sets of
address namely address0, address13, and address26 afier every
13 clock cycles which indicates that the inner product of row0,
rowl3 and row26 of SVs matrix with the input test features
have been completed and the temporary results need the address
for getting stored in the temporary storage block. This
operation is repeated with every count of the counter count! 3.
Once the intermediate results have been stores a counter
(count39) is used to access the contents of the temporary
storage blocks for performing dot product operation with the
Yalpha values.

REGISTER_FILE
(1X39

2
13
aecloutl < HEG FILE(ADDRESS0)

I

i

t

i

i

i

1

i

t

i

]

I t
I i
24 e —

acez_out1 L] i
t

i

i

t

i

|

t

§

i

i

REG_FILE(ADDRESS13)

2a

2
ace3_outi—m| REG_FILE(ADDRESS26)

I
|
|
[
1
1
l
I
|
|
I
; reg_file_out1
1
I
I
I
I
1
1
1
|
|
I

Fig. 8. Temporary Storage Block.

Yalpha values corresponding to different classes are also
stored in FPGA block RAMs. The width of each block RAM
used is 39 with a depth of 24 bits (in the Q24.16 data format).
For accessing the value of the block RAMs count39 is used
where each count of the counter corresponds to sequential
access of one Yalpha value. Three block RAMs have been used
in the design corresponding to three different classes.

The final used in the design unit is the Decision Value
Computation Block and is shown in Fig. 9. This block performs
vector dot product computation between the temporarily stored
results of the kernel computation block in the temporary storage
block and the Yalpha values stored in the Yalpha storage block.
Three such blocks (Class]_DVC to Class3_DVC) have been
used in the proposed design corresponding to three different
classes. From the figure, it is clear that a 24-bit multiplier has
been used to perform multiplication between two inputs (one
input coming from the temporary storage block and the other
from the Yalpha storage block). The output of the multiplier is
given as input to the 48-bit adder whose another input comes
from the accumulator ALPHA_ACC1 which initially contains
bias value Bias1 which is numerically equivalent to the addition

of 'b" as shown in (9). The outputs obtained from each of the
three decision value computation block are of 24-bits denoted
by class1_out, class2_out, and class3_out respectively.

Yalpha ACCI | 4
i + Biasl

Fig. 9. Decision Value Computation Block.

C. Classification Unit

The final unit called classification unit consists of Decision
function and Classification block. It is used in the designed
architecture to decide the label of the input test feature and
provide the corresponding label (either labell, label2, or label3)
as output. This block takes three inputs coming from the three
decision value computation blocks and gives output as labell,
label2, and label3. Decision using this block is made as follows:
labell is selected when the value of class] out is positive and
other two (class2_out and class3 out) is negative, label2 is
selected when class2_out is positive and other two (classl_out
and class3_out) is negative, label3 is selected when class3 out
is positive and other two (classl_out and class2 out) is
negative. Finally, one of the labels among labell, label2, and
label3 will be the output of our proposed linear SVM classifier.

D. Controller Block

For executing a proper sequence of operations and enabling
coordination between different blocks, a controller (Finite-State
Machine) has been used in the designed architecture. The
controller generates control signals for enabling different
counters, accumulators and other storage elements used in the
design at a proper instant of time. The state diagram
representation of the controller is shown in Fig. 10.

V. SIMULATION AND SYNTHESIS RESULTS

All the modules of the proposed architecture are coded in
VHDL and simulated using ModelSim 10.1C. The simulation
result has been shown in Fig. 11. From the figure, we find that
the given input test image belongs to class 3 (since the value of
label3=1). Synthesis is carried out using Xilinx ISE tool chain
(version 14.2). We have used Xilinx ML510 (Virtex-5 FXT)
FPGA platform for synthesizing the design. Fixed point
numbers is used for quantization and Q24.16 quantization
format is used. Table IV shows a comparison of FPGA
simulation results of the proposed linear SVM classifier with its
software implementation in MATLAB. Rows of 1 through 3
shows the confusion matrix of the hardware and software
classification results. From Table IV, we find that the designed
architecture achieves the classification accuracy similar to that
of its software version, but its execution time is much less,
which facilitates real-time classification of the facial
expressions. The hardware resources utilized by the design have
been listed in Table V.

Reset all counters
reset_Ace="1"
preset_alpha_Ace=1"
preset_addr ='1"

en_label reg="'1"

en_class_out="1"

en_class_alpha_Acc="1"

en_class_alpha_mult_reg="1"

en_alpha_bram ='1"
read_reg_file="1"

en_bram="{'

en_class_mult_reg ="'

en_counter663 = '1'
en_countersS] ="1"
en_class_Acc="1"

counter(3 <12

en_counter663 = '0'
en_counterS1 ="'
en_class_Ace="0"

counters| =

reset_counter51 = '’
incr_addr ='1"
en_class_reg_file="'1"

en_counteri3="]'
reset_Acc="1'

Fig. 10. Controller State Diagram.

)

syma vmi0 wymil ¢ MM TS M it
{0000100010130001101001 115 {0000 101011010 11000110131 {00110
{0000101 £100000 1110000010} {00001000011000310100111} {01011t
{000100001 101 1000000010007 00011 100010011001011101 13 {ocdi 111002

0

i3 : X
3 £5] 5,
= i .
p-: —
% i
KE] ! : .

Fig. 11. Simulation Result of the Designed Archite

B . L » 3 N | N
. \\
VI. CONCLUSION
In this paper, hardware efficient FPGA based

implementation of OVA linear SVM classifier for facial
expression classification has been presented. The designed
architecture has been coded in VHDL and implemented on
Xilinx ML510 FPGA platform. The implemented architecture
can perform real-time facial expression classification operating
ata clock frequency 0f241.55 MHz with a recognition accuracy

of 98.50%. The proposed architecture outperforms the
reference architecture [26] and [20], in terms of speed, and arca
without compromising the accuracy. Extending the architecture
for more facial expression classes and integrating it with other
blocks used in FER system is the purpose of our future work.
Moreover, we want to point out that the designed architecture
is not generic, but one can design the similar architecture for
their own application.

TABLE 1V. COMPARISION OF HARDWARE AND SOFTWARE SIMULATION
RESULTS
VHDL MATLAB
Classl Class2 Class3 Classl__ Class2_ Class3
Class1 16 o (1) 16 0 0
Ciass2 1 21 o 1 21 0
Class3 0 0 23 0 L 23
Ervor Race 1.64 Yo 1.64 %

TABLE V.

o -
c
MATLAB

Maximum
Frequency

241.546 M ¥z, Virtex-V 2.17 GHz, Intel Cor2Duo

Time of

; . 65 ms
Computation

4.140 ns

HARDWARE UTILIZATION RESULT OF THE PROPOSED
ARCHITECTURE

Logic Utilization Available Used Utilization (%246)
Stice FFs 81920 6734 8
Slice LUTS 81920 6511 7
9
Occupied Slice 20450 2026
Bonded 1OB 840 75 7
BUFG 32 6
RAMB36 298 1
DSP48 320 24 7
Acknowledgment

The authors express their deep sense of gratitude to Prof.
Santanu Chaudhary, Director CSIR-CEERI for encouraging
research and development activities. Authors would also like to
thanks Dr. A.S Mandal, Group Leader, Cognitive Computing
Group, CSIR-CEERI, for his constructive suggestions. The

financial support of DeitY/MCIT is also gratefully
acknowledged.

REFERENCES
[1] Fasel. B.; Luettin, J. Automatic facial expression analysis: A survey.

[9]

Pattern Recognition. 2003, 36, 259-275.

Bettadapura, V. Face Expression Recognition and Analysis: The State of
the Art, Tech Report arXiv: 1203.6722; April 2012; pp. 1-27.

Wu. X; Zhao, J. Curvelet Feature Extraction for Face Recognition and
Facial Expression Recognition. In Proceedings of IEEE 6" International
Conference on Natural Computation, Yantai, China, 10-12 August 2010;
Volume 3, pp. 1212-1216.

Bartlett, M: Hager, J; Ekman, P; Sejnowski, T. Mecasuring facial
expressions by computer image analysis. Psychophysiology 1999, 36,
253-263.

Hirata, W; Tan, J.K; Kim, H: Ishikawa, S. Recognizing facial expression
for man-machine interaction. In Proceedings of IEEE ICCAS-SICE,
Fukuoka, 18-21 August 2009; pp. 1621-1624.

Beszedes, M; Culverhouse, P; Oravec, M. Facial emotion classification
using active appearance model and support vector machine classifier.
Machine Graphics and Vision International Journal, 2009, 18, 21-46.

Kotsia, I: Pitas, I. Facial expression recognition in image sequences using
geometric deformation features and support vector machines. IEEE Trans.
Image Process. 2007, 16, 172-187.

Kotsia, I: Pitas, I. Real time facial expression recognition from image
scquences using support vector machines. In Proceedings of IEEE
International Conference on Image Processing, 11-14 September 2005;
Volume 2, pp. 11-966-9.

Dumas, M. Emotional expression recognition using support vector
machines. In Proceedings of International Conference on Multimodal
Interfaces, 2001,

[10

[1s

[16

(17

(s

[19

[20

[21

[23

[24
[25

[26

[27

[28

]

]

]

1

|

]

]

]
]

Tsai, H.H; Lai, Y.S; Zhang, Y.C. Using SVM to design facial expression
recognition for shape and texture features. In Proceedings of If
International Conference on Machine Learning and Cybernetics,
Qingdao, 11-14 July 2010; Volume 5, pp. 2697-2704.

Patil, R.A; Sahula, V; Mandal, A.S. Feature classification using support

vector machine for a facial expression recognition system. Journal of

Electronic Imaging, 2012, 21, 043003-1.

Visutsak, P. Emotion Classification through Lower Facial Expressions
using Adaptive Support Vector Machines. Journal of Man, Machine and
Technology, 2013, 2, 12-20.

Anguita, D: Boni, A; Ridella, S. A digital architecture for support vector
machines: theory, algorithm, and FPGA implementation. /EEE Trans.
Neural Networks. 2003, 14, 993-1009.

Khan, F.M; Arnold, M.G; Pottenger, W.M. Hardware-based support
vector machine classification in logarithmic number systems. In
Proceedings of IEEE Intemnational Symposium on circuits and systems,
23-26 May 2005; Volume 5, pp. 5154-5157.

Irick, K.M; DeBole, M; Narayanan, V; Gayasen, A. A hardware efficient
support vector machine architecture for FPGA. In Proccedings of IEEE

16" International Symposium on Field-Programmable Custom
Computing Machines, Palo Alto, CA, 14-15 April 2008; pp. 304-305.

Hsu, C.F; Ku, M.K; Liu, LY. Support vector machine FPGA
implementation for video shot boundary detection application. In
Proceedings of IEEL International SOC Conference, Belfast, 9-11
September 2009; pp. 239-242.

Pina-Ramirez, O; Valdes-Cristerna, R; Yanez-Suarez, O. An FPGA
implementation of linear kernel support vector machines. In Proceedings
of 1IEEE International Conference on Reconfigurable Computing and
FPGA’s, San Luis Potosi, 20-22 September 2006; pp. 1-6.

Nie, Z; Zhang, X: Yang, Z. An FPGA Implementation of Multi-Class
Support Vector Machine Classifier Based on Posterior Probability. In
Proceedings of 2010 3™ International Conference on Computer and
Electrical Engineering, 2012.

Anguita, D; Ghio, A: Pischiutta, S; Ridella, S. A Hardware-friendly
Support Vector Machine for Embedded Automotive Applications. In
Proceedings of IEEE International Joint Conference on Neural Networks,
Orlando, FL. 12-17 August 2007; pp. 1360-1364.

Mahmoodi, D; Soleimani, A; Khosravi, H; Taghizadeh, M. FPGA

simulation of lincar and nonlinear support vector machine. Journal of

Software Engineering and Applications, 2011, 4, 320.

Ruiz-Lita, M; Ycbenes-Calvino, M. FPGA implementation of a support
vector machine for classification and regression. In Proceedings of the
1EEE International Joint Conference on Neural Networks, Barcelona, 18-
23 July 2010; pp. 1-5.

Ruiz-Liata, M; Yebenes-Calvino, M. FPGA implementation of support
vector machines for 3D object identification. In Artificial Neural
Networks-ICANN 2009; Springer: Limassol, Cyprus, 14-17 September
2009: pp. 467-474.

Bauer, S; Kohler, S; Doll, K; Brunsmann, U. FPGA-GPU architecture for
kernel SVM pedestrian detection. In Proceedings of IEEE Computer
Society Conference on Computer Vision and Pattern Recognition
Workshops, San Francisco, CA, 13-18 June 2010; pp. 61-68.

Vapnik, V. Statistical Learning Theory. New York: John Wiley & Sons
Inc. 1998.

Abe, S. Support vector machines for pattern classification. London:
Springer. 2005, 2.

Kreflel, UH.G., 1999, February. Pairwise classification and support
vector machines. In Advances in kernel methods (pp. 255-268). MIT
press.

Saurav, S., Singh, S.. Saini, R., & Saini, A. K. (2016). Hardware
Accelerator for Facial Expression Classification Using Linear SVM. In
Advances in Signal Processing and Intelligent Recognition Systems (pp.
39-50). Springer Tnternational Publishing.

Chang, C.C; Lin, C.J. LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Svstems and Technology (TIST). 2011,
2,27.

