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Abstract— High Speed Data Transfers is a typical requirement
of data intensive applications like image and video processing.
Speed efficiency can be ensured by handling the data transfers at
both Hardware and Software level. A complete system has been
developed by implementing the hardware architecture on FPGA
and writing corresponding Software device driver to perform the
speedy data transfers from endpoint to a root complex device
using PCle interface. This paper describes the approach to design
and verify this system. The speed of data transfer achieved
practically for PCle (2.0) x4 is 4Gib/s. The developed hardware
architecture is resource constrained and low power. The hardware
is implemented on Xilinx Zynq device. This work has a good
potential in the field of image and video processing and can be
used to perform large data transfer operations at high speed.
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[. INTRODUCTION

Image and video processing has revolutionized the world
with its high performance digital cameras having flexible
interface to achieve high throughput. The camera captured
images are put to hardware accelerators to perform filtering.
processing and displaying operations. There are huge number
of computations performed on the captured images using FPGA
boards. FPGA devices are used to create reconfigurable
hardware architectures to perform the above said operations at
high speed. After applying the image and video processing
algorithms on the captured images, these images are sent to
Central Processing Unit (CPU) for displaying and further
processing. in this paper, a hardware architecture is developed
in Xilinx Vivado using IPs to send the processed images data
from the FPGA board to CPU with very low latency. Peripheral
Component Interconnect Express (PCle) is used here as the
high speed serial interface to create the communication link
between FPGA board and the CPU. To create and manage the
PCle interface, a software device driver is written on Linux
Ubuntu OS which performs the data transfer operations
smoothly and speedily [1].

For a typical high speed vision requirement, frames are
captured at more than 250 frames/sec, pre-processed and sent
to CPU for further processing and usage. A high speed frame
grabber which captures image at more than 250 frames/sec with
resolution of (512*512 pixels), needs a high speed (Gib/s)
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interface through which the data could be sent to the host
system for further processing. In order to fulfill the high
throughput need of high-speed digital data processing and to
achieve high-speed communication between digital front-ends
and computer, PCle is the best suitable interface now a days
[2]. This interface has a number of versions and lanes which
could be used as per the application requircment. In this paper,
PCle (2.0) x4 is used to analyze the capability and etficiency of
this interface. The developed hardware architecture is having
Zynq SoC, which has abundant logic cells and dual hard core
ARM Cortex A9 processors to make the complex decisions
based on the arrived data from the peripherals like high speed
camera. The Zynq SoC is also having the Programmable Logic
(FPGA) and is capable in processing large data, applying
massively parallel algorithms and performing speedy
computations. Fig. 1 describes the interaction between PCle
endpoint and root complex CPU. Xilinx ZC706 board having
Zynq-7000 all programmable SoC (Z-7045) is used as a PCle
endpoint.
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hardware available in the PL part of this board. The developed
hardware creates an interface between the endpoint and root
complex CPU. To manage the data transfer operation, a
software device driver is written on Linux core which could be
run in online mode. The implemented software driver can work
on all the Zyng SoC boards by modifying the configurations

3.

In the remaining sections of this paper, hardware design and
software driver development are discussed. The developed
hardware and software are put on the FPGA board and CPU, it
performs the required data transfer operation and verifies the
data buffers.

1. HARDWARE DESIGN DEVELOPMENT

Hardware design is realized using Xilinx Vivado tool and
implemented on Xilinx Zynq-7000 SoC. The main IPs which
are used in this project are: 1. AXI CDMA, 2. AXI memory
mapped to PCL express, 3. Zyng-7000 processing system, 4.
AXI BRAM generator, 5. Block memory generator. Other
small IPs like binary counter, AX! interconnect, processing
system reset. clock buffers and other glue logic 1Ps are also
used in this design. The goal is to transfer data packets from
ZC706 board DDR3 memory to Intel-i7 CPU using PCle bus.
PCle is more like a network where different endpoints are
connected to a switch or bridge and the switch or bridge is
connected to root complex using dedicated paths. In the
presented work. endpoint is directly connected to the root
complex device, The endpoint which initiates the transaction is
called requester and the responder is called completer. Here, the
7706 Board is configured as endpoint and the CPU board is
functional as root complex. When the PCle device is connected
to CPU then the configuration address spaces are filled. The
PCle device has three PCIEBARSs (base address register) but
only one s required here. which is used by the CPU to
communicate with the ZC706 FPGA board. The source and
destination addresses are of different bits (32 bits in ZC706
DDR and 64 bits in Intel-i7 CPU address space). It is necessary
to use an address translator 7.e. AX1 memory mapped to PCI
express block. To store the translation vectors, one Block
Memory (RRAM) is needed and the controller of this memory
is AX! BRAM controller [4]. Vivado 2015.1 is used to create
the Zynq based hardware architecture.

/yng processing system is required to execute the
instructions. DDR controller sends the data buffers from Zynq
DDR to CPU DDR. CDMA block manages data transfer and
CPU usage. The remaining blocks like Processor system reset,
counter, AX! Interconnect ezc. are supporting IP blocks which
are used to generate clocks, resets and interconnections
between [P blocks. Some logical gates are also used to bring
down the frequency of reference signals to act as debug
monitors o check the proper working of the developed design
on the hardware board. An implemented design has a low
visibility to be lTooked into for debugging. A designer has to
connect a JTAG debugger and uses Chipscope or other similar
In Circuit Debugger (ICD) to dwell into the FPGA design once
it is configured. We have used an old-school technique of LEDs

is used to check the clocks and basic handshaking. Some user
LEDs on the board are attached to show the clock and link up.
Link up is the basic step towards the handshaking of PCle
interface. The block diagram in Fig. 2 shows the main [Ps used
to perform data transfer operations speedily. The Zyng-7000
processing system, AXI CDMA and AXI PCle IPs configures
each other. The Block memory generator IP is accessed by
Zyng, AXI PCle and AX] CDMA IPs to get the translated
addresses during transfer operations. The DDR is interfaced
with Zvng-7000 and data are accessed from it through its slave
ports. The accessed data are put on the PCle link after encoding
and parallel to serial conversion. The PCle link transfers the
data on the CPU side and after serial to parallel conversion and
decoding, the data buffers are received and displayed on the
CPU.

Data is transferred in the form of standard packets. A data
transfer packet consists of overheads which decreases the
efficiency of transfer but increases the reliability. The data
transfer packet looks like as shown in Fig. 3 [5]. PCle protocol
ensures the transfer of data payload from one device to other
reliably.
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For large data transfers, the whole data is divided into
packets and sent in sequence, the error cyclic redundancy check
(ECRC) and linear CRC are appended to the packet in
transaction and data link layers. In the physical layer, start and
stop bits are added and then 8/10b encoding is done. Data is
sent bit by bit after conversion from parallel to serial [6].
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This hardware architectural design is then synthesized and
bitstream file is generated, which is dumped to the ZC706
board. This design is now ready to create the detection link and
initializing the interfaces which are necessary for data transfers.
CPU should be able to detect the ZC706 board. The detection
of ZC706 board indicates that this is ready to perform the data
transfer operation. User LEDs as discussed above in this section
indicates the clock and PCle Link establishment with the CPU .
To perform the required transfer, a software device driver is
developed and inserted with Linux Ubuntu OS as explained in
the next section.

. SOFTWARE DEVICE DRIVER DEVELOPMENT
Device driver is a software program file which runs on a
specific hardware target. It acts as an interface between
firmware and host operating system. As we go from Industry

Standard Architecture (ISA) bus to PCle bus, the complexity of

software program increases. PCle driver is loosely based on
PCI driver approach only. It makes use of the same library and
header file structure as used in PCI. Only the addresses and
Transaction Layer Packet (TLP) size are different than PCI.
Writing device drivers is more like copying and applying the
functions based on our application. But, it’s not trivial. So, the
main focus should be on understanding the header files and
functions and knowing how to use and where to use these. In
computers, a lot of processes run concurrently and do different
tasks. Each process asks for different resources like computing
power, memory, network connectivity, registers and other
resources. The kernel is the fundamental and most lmportant
part of OS which manages all the requests made by different
tasks. The kernel’s role can be split into these: Process
management, Memory management, Filesystems management,
Device controls and Networking [7]. When any system call is
occurred then the calls are sent to specific area to get managed.
The kernel subsystems manage every call which are made by
user space application programs. When the hardware devices
are attached to peripheral ports then it gets detected by using
device drivers and its configuration addresses and mount
addresses are updated to specific proc files. Hardware is
accessed using features like Virtual File Systems (VFS), Talk
To You (TTYs). When the specific system calls are made, the
kernel subsystems access the hardware devices and perform the
desired tasks.

Linux OS is chosen to write the PCle device driver. because
ofits open source nature and availability of community support,
which is very helpful for achieving such an objective. Another
advantage is that the device driver modules can be added to the
kernel during runtime in Linux systems, which is not a casc in
MS Windows. In windows. the system necds to be rebooted
after adding any driver modules. The driver modules are added
and removed by using insmod and rmmod commands
respectively. A char driver is written which can perform the
burst mode Direct Memory Access (DMA) transfer in scatter
gather mapping. The driver is written for kernel space and user
space separately.

A. Kernel Space Driver Writing

Kernel space driver is OS specific. It is created to make a
suitable environment for the user space applications to be
executed. It sets file attributes and manages file system
operations. In case of PCle kernel space driver. it initializes,
probes and removes PCle device. There are a number of header
files available to be used to write driver according to our task
requirements in /usr/include and /usr/include/limux section of
the OS files. The basic header files for char drivers are:
kernel h, module.h and init.h. Another header file pei b is added
for PCle char driver. Except these, kobject.his used to build the
hierarchy seen in /sys. interrupt.h to request and handle
interrupts, string.h to change string to integer. device h 1o use
device id and many more to allocate character device regions.
device.h also enables and disables pci. For file operations and
signal attributes, fs.4 and signal h files are used. There is no
main() function in kernel space. The functions are called only
when any device is interfaced. The kernel space driver do the
following tasks: 1. Gives major and minor number. 2. Sets file
system attributes, 3. Manages device file systems opening,
closing and memory mapping, 4. PCle device probing, 5.
Handles interrupts, 6. Sets DMA masking and coherent
mapping, etc. This kernel space driver file is compiled with
Linux kernel and it produces .ko (kernel object) file. Kernel
object file is inserted first as a driver module which creates an
environment for user space programs to execute. The user space
driver file makes interface with the kernel module and use the
hardware peripheral device to transfer required data from
source address to destination using DMA in burst mode [8].
We have used Ubuntu 16.04, kernel version 4.6 to implement
PCle driver.

B. User Space Driver Writing

User space device driver contains the custom logic to
transfer data from source to destination, handles interrupts and
performs data translation operation. As the endpoint board
ZC706 is attached to the CPU. the functions from kernel object
modaules are called; and virtual files are created in /dev and /sys
directories which contains configuration addresses and memory
mapped addresses of different PCIEBARs and AXIBARS. The
user space program handles the data transfer operations using
the offset addresses [4]. The Base Address Register (BAR)
mapped in memory or I/O space is used to control registers and
this is the address used by any root complex or CPU to
communicate with the endpoint device. The driver allocates
buffers in DDR memory and the address of these buffers are
written in control registers. The driver accesses the control
registers and performs read and write operations from the buffer
via DMA. The DMA block makes an interrupt when the tasks
get completed [4]. The kernel space program may also work for
different PCle hardware designs because it uses scneral
functions which are called, as and when the device gets attached
to CPU. It registers and unregisters the driver. The device name
and id are filled in PCI table. BAR is mapped in memory or /O
space and driver allocates buffer in DDR. The kernel object (ko
file) has been created based on the value of kernel object
attribute (read, write and other permissions of kernel object
file). In this way, the correct kernel variable is filled into buffer




and then updated. These buffers are written in control registers
and accessed by DMA. Based on the device major and minor
number, PCle device is probed. The memory mapped addresses
are given to buffers allocated previously and DMA masking is
done. Masking is a process of acknowledging the kernel that
our system is capable of “x™ bit DMA transfer. It can be noted
here that not all the CPUs are configured of using full DMA
transter. So. as a practice it is reccommended to query the DMA
masking and coherent mapping. At the same, PCle devices are
capable of using 64 bit DMA addressing in 64 bit CPUs. Citing
from the code, a signal named siginfo is used to store and
transter the information of signals to user space. This signal is
used in user space after data transfer completion to indicate that
an interrupt has been received by user space. After successfully
transferring the data from endpoint to root complex using DMA
in burst mode with scatter gather mapping, the PCle driver is
removed and buffers are unmapped.” The character device
region is also unregistered and at last PCle is removed by
running the command rmmod | 7]. [8].

IV. DATA TRANSFER OPERATION IN DETAIL

A number of descriptors are created and DMA is used in
burst mode with scatter gather mapping to perform the data
transfer operation. The descriptors contain the next descriptor
address to continue the chain of execution and it has also the
source address, destination address and data bytes value to be
transferred. A sample of a descriptor is shown in Table I [4].

FABLE T A SAMPLE DEESCRIPTOR
Store Next )
: ) Source Destination ' Data bytes
descriptor at |« descriptor
i address address value
this address  address

These descriptors are created in application layer of PCle
devices. As per the maximum payload size of the peripheral
PCle and host PCle devices, the data packets are formed in the
subsequent three layers (as described above in Fig. 3) and then
the data are transferred bit by bit following the serial transfer
protocols of PCle devices. Descriptors are of two types: |I.
Address translation descriptor, 2. Data transfer descriptor. The
translation descriptor increases the address offsets according to
the size of transfer after every data transfer descriptor
execution. It also changes the destination address and is
appropriatelr  sct before the execution of data
descriptor. I'he target data transfer descriptor takes data from
source address and throws it to the destination address. The
destination address 1s changed by the AXI memory mapped
PCle as shown in Fig. 4.

transter

PCleBARO Destination
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Write Addi Address 41000
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Wnite Destination -
IPCle Root Complex TLp  PCle Endpoint Addr Write
Destination Addr 0X40000030 Address
0X00000004AACEQ030 AXIBAR2PCIeBARO Channel

Fie 4 Address translation from 32-bit to 64-bit

The AXI memory mapped PCle block translates the 32-bit
address to 64-bit and vice-versa. Fig. 4 is an example of address
translation. The actual translation differs from it. A group of
descriptors are executed in DMA burst mode with scatter gather
mapping until the required data is transferred. The transferred
data is accessed using AXIBARs and the data buffers addresses
are printed on terminal [4].

V.RESULTS

We have developed the hardware architecture design in
Vivado and PCle device driver software. First of all, the Xilinx
7706 board is inserted to the PCle slot of Intel-i7 5960x CPU.
When the board is inserted to the PCle slot, it is not getting
detected by CPU. The developed hardware design is dumped to
the ZC706 board through JTAG master booting mode. This
dumped design configures the FPGA, Zynq PS and initializes
the interfaces. Fig. 5 shows the assembled hardware.

I'ig. 5 Hardware assembly

The LEDs glow as the PCle linkups. The PCle device is
scarched using /spci on Linux OS terminal and it shows that a
new PCle device has been detected.

The designed hardware architecture in Vivado requires very
less percentage of available resources like Flip-flops, L.UTs,
Global buffers and transceivers etc. as described in Fig. 6. Only
15% of available LUTs, 7% of Flip-Flops, 20% of Transceivers
and 34% of Global buffers have been used. The power
requirements are also very low and the total power consumption
is around 4W.
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After PCle endpoint detection by the CPU, the device driver
software is inserted to the kernel. The kernel space driver
creates an environment for the user space applications to be
executed and manages the operations. To perform the data
transfer operation from endpoint to root complex device, the
user space driver software is compiled and run on the terminal.
This initiates the scatter gather DMA operation and transfers
data buffers from ZC706 DDR to CPU DDR through PCle.

As an example, 40MiB data are sent using 10 data transfer
descriptors of 4MiB each and 4 data translation descriptors of
8 Bytes each. Large data can be sent using more number and
different sizes of descriptors. The transfer operation is
performed for different sizes of data using different sizes of
descriptors and a comparison table is prepared as shown below
in Table 1. The speed of transfer is calculated using transfer
size and elapsed time during transfer.

TABLE II. DESCRIPTOR SIZE VS TRANSFER SPEED

Size (KiB) Transfer speed
(Gib/s)
128 3.70
256 3.78
512 3.85
1024 392
2048 3.96
4096 4.00
5120 4.01
6144 4.02
7168 4.03
<8192 4.03

Increase in descriptor size reduces the number of interrupts
to be handled. This increases the speed of data transfer. It
cannot be further increased beyond 8MiB due to a limitation
from Xilinx IP which says 8MiB or more data cannot be sent
using one descriptor [4]. The address translation descriptor is
required after every 8MiB data transfer. Transferred data
buffers are verified by checking at source address and the
destination address using Xilinx Microprocessor Debugger
(XMD) and device driver software respectively.,

This implementation proposes an optimal way ot achieving
PCle transfers in an efficient way. Data transfer is validated at
both source and destination. The average speed of transfer has
been experimentally proven as around 4 Gib/s.

VI.  DISCUSSIONS

This work has good potential in the field of high speed
image and video processing. It could be used to develop a Zynq
SoC based high speed image frame grabber, where image
processing algorithms can be easily applied at high frame rate.
It uses less resources and offers low latency interface to transfer
processed data from FPGA board to CPU. We expect Zyng SoC
based futuristic high speed vision frame grabber systems soon
in market, which could give better performance as compared to
the available ones. There are major industries like Xilinx.
Altera, Photron, efc., working on the same to achicve faster
response and also trying to get the efficient architectural

designs to perform the data transfer and algorithmic processing
operations. PCle is leading in the arca of high speed data
transfer application interfaces. Now a days, high speed storage
systems also use PCle interface to transfer and store data
speedily. The developed interface has some limitations:

A. Payload Size in Data Packets

The PCle specification allows payload size up to 4096 bytes
per packet. But, the peripheral devices and motherboards don’t
support the same. In this paper, PCle gen2 v2.6 IP, Zynq SoC
and Intel-i7 5960x CPU are used. The default payload size in
this case is 256 bytes and it needs to be increased to speed up
the transfer rate and efficiency. This can be done by modifying
the PCle configuration registers of the motherboard and the
HDL configuration of the PCle [P. As per the default payload
size, we get 92% [(256 / (256+20)) * 100] efficient transfer
where 20 bytes are considered as the headers and error
redundancy bytes |9].

B.PL Clock Frequency

The transfer speed directly depends upon the PL fabric
clock and it could be configured up to 250Miz in Vivado tool.
However, PCle clock and PI. fabric clock can be increased to
more than 250MHz by using external PLI. (Phase Locked
Loop) circuits [10]. We will try to overcome these limitations
in future.

C. Descriptor Transfer Size

The supported transfer size for a single descriptor is 8MiB.
Xilinx has limited the transfer size of descriptor to less than
SMiB [4].

In this paper, PCle (2.0) x4 has been used to transfer data
from endpoint to root complex device based on the developed
hardware architecture design implemented on 7706 board and
created device driver software. This work can be used as an
analogy in developing higher form factor PCle interfaces [4].
DMA technique is used to transter data from source to
destination at very low latency. The transferred data buffers arc
verified using XMD and the device driver software. Data
transfer speed is calculated based on the data buffer transfer
size and time elapsed in the transfer operation. The developed
hardware architecture is very simple and uses less resources and
power at the same time.

VII.  CONCLUSIONS

The large size data buffers are transferred from Xilinx Zynq
ZC706 (DDR) to Intel-i7 5960x CPU (DDR) through PCI
Express interface. The practical speed of data transfer is around
4Gib/s without using any extra clocking circuits. The speed of
transfer is comparable with the available alternatives and the
developed system is better in the sense of hardware design
flexibility, software abstraction and resource utilization. Zyngq
device is capable of processing and transferring images data at
high speed. The speed of transfer can be increased by
overcoming the limitations.  However,  this  hardware
architecture design uses very less hardware resources to
transfer data at high speed. The speed of data transfer directly
depends on PL fabric clock and CPU clock. The frequencies of



these clocks can be increased by adding external PLL circuits
and SMA connectors. To achieve the 100 Gib/s speed, greater
form factor and newer version PCle connector can be used [ 11].
The device driver is capable to work with different Zyng boards
with minor modifications.

This work has a very good scope in high speed object
tracking, stampede surveillance, Robotics vision and in image
frame grabbers. It could also work as a high speed data storage
system.
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