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Abstract: RF Vacuum Electronic Devices (RF VEDs) have
been the most promising milestones for radio-wave and
microwave generation at high power and high frequencies
for decades. Spatial Harmonic magnetrons (SHMs) with
cold secondary emission cathodes have proved to be an
efficient solutions to the viability of magnetrons at high
[frequency. The paper presents a 3-D Particle in Cell (PIC)
simulation of a D-Band (140 GHz) SHM using CST particle
studio (CST-PS).
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I. Introduction

Spatial Harmonic Magnetrons (SHMs) have been a
technical breakthrough in the development of a variant
of magnetron, utilizing a spatial harmonic of the RF
field of a non-n (usually a /2 mode or a neighboring
one) for its operation [1]. These magnetrons have
facilitated various advantages of increased dimensions
of resonant system even at higher frequencies,
increased mode separation, reduction of dc magnetic
field, thermal and operational stability with extended
lifetime using cold cathodes [2]. Vehicle guidance
system, meteorological and navigational high
resolution radars, environmental monitoring systems,
desktop charge particle accelerators, compact terahertz
(THz) devices for chemical and biological reagents are
some of the possible applications for such high
frequency magnetrons [3]. The paper introduces a brief
review in section I. The 3-D PIC simulation details of
a D-band (140 GHz) SHM is summarized in section II.
Section III contains the simulation results and
discussions. Section [V concludes the paper.

II. Simulation & Analysis

Single harmonic approximation approach [4] is used to
find the initial geometrical parameters of a vane type
anode of the designed SHM. On the finalization of the

anode structure and its dimensional parameters
summarized in Table.1, a simulation model is designed
in CST microwave studio [5]. Later a cold secondary
emission (CSE) cathode, end caps, an iris coupled
Ag /% output section and a WR-6 waveguide is added
to complete the SHM simulation model. The SHM
utilizes a CSE cathode which requires the modelling of
suitable secondary emission coefficient (§) (Fig.2).
This is done by coding eq.1, 2, 3 in MATLAB obtained
from various secondary emission models [6]. In
addition the operating voltage and the applied
magnetic field deciding the operating point is obtained
by solving Hull- Hartree equation (eq.4) in MATLAB
(Fig.3). These inputs (simulation model, secondary
emission characteristics, Operating voltage and
magnetic field) are then given to the CST-PS. The
nonlinear beam wave dynamics in CST particle studio
reveals interesting insight into the interaction
mechanism of spatial harmonic magnetrons.
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Figure 1: Simulated Model of SHM in CST-Particle
Studio.
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Figure 2: Secondary emission yield for platinum versus

impact energy for normal incidence.
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Figure 3: Hull-Hartree Plot for SHMs operating point.

Table 1: Parameters of SHM resonator block

Parameters Value (mm)
Anode Height 1.50
Cathode Radius 0.70
Anode inner Radius 1.30
Vane depth* 1.654
Number of Resonators 28

1II. Results and Discussions

The SHM dispersion profile by simulations (CST-
MWS) is shown in Fig.3. The mode numbered (mode

number n=22) is the first backward harmonic of
7/2 mode (i.e. (;r/2 ) -1 mode). This is the operating
mode of SHM. The mode separation between the
(t/2)+1, (m/2), and (/2 ) -1 mode is summarized
in Table.2.
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Figure 4: Hull-Hartree Plot for SHMs operating point.
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Table 2: Mode separation in SHM

Frequency | Mode separation
Mode | Gy (GHz)
(m/2)+1 151.19 4.89
(m/2) 146.30 -
(m/2)-1 139.78 6.52

The output Power is calculated using eq.6 where a:
WR-6 waveguide width, b: WR-6 waveguide height,
Zois wave impedance, Vou is voltage at output port, fc
is Wr-6 cut-off frequency, and fis operating frequency.

Prc = ()21~ (5) ©

Fig.5 shows the Voltage signal growth and its power
spectral density which reveals the hot resonant
frequency is 137.32 GHz. The temporal growth of the
anode current and output power is shown in Fig.6. The

~anode current and output power starts to build up at

around 1 ns and saturates at around 8 ns. The saturated
current and power values are 5.6 A and 1.40 kW. The
SHM provides an efficiency of 2.19%. The output
parameters of the designed SHM are summarized in
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Table 3: Output Parameters of designed SHM.

Parameters CSIR-CEERI SHM
Output Power (kW) 1.40
Anode Voltage (kV) 11.30
Anode Current (A) 5.6
Magnetic Field (G) 7900
Overall Efficiency (%) 2.19

Conclusions

-

The simulation reveals the PIC study and analysis of
beam wave interaction in SHMs. The space charge
cloud shows the formation of electron spokes
(representing the beam wave interaction) near the
anode surface. The designed SHM provides 1.40 kW
power with an efficiency of 2.19% at around 140 GHz.
The work will be extended to raise the power level and
improve efficiency of the designed SHM.
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