A High-performance and Area-efficient VLSI
Architecture for the PRESENT Lightweight Cipher

Jai Gopal Pandey, Tarun Goel*, Abhijit Karmakar
CSIR - Central Electronics Engineering Research Institute (CEERI)
* Academy of Scientific & Innovative Research (AcSIR), CSIR-CEERI Campus
Pilani-333031, India
jai@ceeri.res.in

Abstract— Security and privacy are the prime concern in the
emerging internet of things (IoT) and cyber physical systems
(CPS) based applications. Lightweight cryptography plays an
essential role for securing the data in this emerging pervasive
computing environments. In this paper, we propose a high-
performance and area-efficient VLSI architecture with 64-bit
datapath for the PRESENT block cipher. The proposed
architecture performs an integrated encryption/decryption
operation for both 80-bit and 128-bit key lengths. The architecture
is synthesized for the Virtex-5 XCSVLX110T FPGA device,
available on the Xilinx ML-505 platform. It has been observed that
the proposed architecture utilizes 0.73% and 0.87% of FPGA
slices for 80-bit and 128-bit key lengths respectively. A throughput
of 410 Mbps and power consumption is about 16 mW for both the
key lengths.

Keywords— Lightweight cryptography; PRESENT block cipher;
Integrated encryption/decryption; VLSI architecture; FPGASs.

L. INTRODUCTION

The rapidly-growing area of internet of things (IoT) and
cyber physical systems (CPS) is based on an ecosystem which
eventually relies on billions of tiny interconnected computing-
devices [1], [2]. The ability of selective computing, sensing,
control and communication, makes these ever-ready devices
effective, efficient and intelligent. Some of the day-to-day
applications around these devices include car-locks, e-cash
cards, electronic gadgets, digital lockers, secure communication,
and many more. These tiny devices and their network create a
wide-spread pervasive-computing infrastructure in emerging
applications. Ever-increasing applications of these devices
create an extensive demand of smart computing system and their
energy-efficient field deployment. Besides design goals,
security and privacy are the prime aspects of this [oT-based CPS
infrastructure. Here, the field of cryptography and related
ciphers provide a mechanism by which data can be efficiently
secured. To secure the transmitted data through any electronic
system, a variety of ciphers are used for years. The deployment
trend of ciphers in electronic systems is shown in Fig. 1.

o

b

Desktops/
&

Servers
po

[

% Embedded ! NY1D¥ ;
Tablets % Systems : Sensor | loT { CES
g oY ¢ Networks ; !

Conventional Cryptography Lightweight Cryptography

Fig. 1. Deployment trend of ciphers in electronic systems.

This research work has been carried out under the SMDP-C2SD project,
sponsored by MeitY, Govt. of India.

As shown in the Fig. 1, majority of the conventional
cryptographic ~ algorithms has been developed around
desktop/server centric environments. Therefore, many of these
cryptographic algorithms —are generally unsuitable for
implementation in constrained devices which are used in the
modern-age applications. In many conventional cryptographic
standards, the trade-offs between security, performance and
resource requirements were optimized for desktop and server
environments. This makes the implementation of conventional
ciphers difficult in resource-constrained applications, and their
performance may not be acceptable. The shift from desktop
based applications to small-devices centric applications bring a
wide range of security and privacy concerns. Lightweight
cryptography provides solution tailored for resource-constrained
devices and their efficient VLSI implementations [3].

Recently national institute of standards and technology
(NIST) provided a report containing an overview of lightweight
cryptography and an outline of NIST’s plan for standardizing the
lightweight cryptographic algorithms [4]. Further, a detailed
taxonomy of the lightweight block ciphers can be found in [3]
and [5]. Systematic survey of lightweight-cryptography ciphers
and their software and hardware implementations with detailed
description and related discussions can be found in [3], [5] and
[6]. Here, it has been emphasized that efficient implementation
of the ciphers are closely dependent on the selection of
appropriate architecture, as they result in low implementation
complexity and high-performance in actual realizations. To
propose a new architecture for the lightweight cryptography,
there is always trade-offs between the three prime objectives i.e.
security, cost and performance, which is shown in Fig. 2 [7].

Resistance
against attacks

48 rounds

\ 16 rounds

- ~ \

/
- g,
/\ ~
——————————— Performance |
\ Parallel \ /
|
t

Energy,
Throughput

Area, Power

Fig. 2. Architectural trade-offs between security, cost and performance.
Adapted from [7].

In the context of lightweight cryptography, ISO/IEC 29192-
2 has standardized a symmetric block cipher algorithm in the
year 2012, which is known as the PRESENT cipher [8]. The
algorithm provides an adequate level of data security alongwith
hardware-oriented performance attributes, which makes it a
prominent choice for developing most of the secure and
lightweight applications [5] and [9].

In this paper we propose a high-performance and area-
efficient VLSI architecture for the PRESENT block cipher that
completely integrates both encryption and decryption engines.
The architecture has been implemented in the Xilinx Virtex-5
XCSVLXI110T FPGA device [10]. The experimental results of
the implementation show that the proposed architecture
consumes a number of 126 slices for the 80-bit key and 150
slices for the 128-bit key lengths. The architecture is capable of
running at a clock frequency of more than 210 MHz. The
dynamic power dissipation is about” 16 mW when the
architecture has been operated with around two thousand
random input vectors.

Rest of this paper is organized as follows: In Section II, an
overview of the PRESENT algorithm is given. Section III is
used to discuss the existing implementations of the PRESENT
block cipher. An integrated architecture for the PRESENT block
cipher alongwith a detailed description of various basic building
blocks are proposed in Section IV. Section V is used to provide
experimental results alongwith a comparison with an existing
architecture from literature. Finally, conclusions are drawn in
Section V1.

II. THE PRESENT ALGORITHM

The PRESENT algorithm works on a block size of 64-bit and
supports two key length variants of 80-bit and 128-bit. The
principle of PRESENT cipher is based on the concept of
substitution and permutation network (SPN). There are total 31
rounds and each round consists of an XOR operation, which is
required to introduce a round key K, for0 < <31, where K3, is
used for post-whitening operation [9]. A non-linear substitution
layer operation is performed in each round and this layer consists
of a 4-bit S-box which is applied 16-times in parallel. In addition
to that there is a linear bitwise permutation layer. These
operations are described below:

A. The Key Schedule

The cipher requires a unique round key (K ,) in each round,
where the input key is stored in a key register K (k,,k,,...k,) for
80-bit key or K (k,,,k,...k,) for 128-bit key length.

B. Add Roundkey Operation (AddRoundKey)

With current state b,...5, and for the given leftmost 64-bit
of the round key K, = ki, ...k, (or K, = k,, ...k,); 0<i<31,
the AddRoundKey operation is defined as b,=b @k, for
0< ;<63 [9]

C. The S-box and Inverse S-box

The PRESENT algorithm requires a 4-bit-to-4-bit S-box (S)
as F — F; [9]. The 64-bit current state 5,..5, is taken as

sixteen 4-bit words w,,...w, , where w, =5, . |15,,., | b,.., |

b,,, for0<i<15. The output S[w,]provides the updated stai

values as per [9]. The S-boxes are used in each of the rounds and
in the key scheduling operation. For inverse S-box, the S-box
does not satisfy S(S(x)) = x,x € F; ; thus, same S-box cannot

be used in encryption and decryption both. For the PRESENT
cipher, a relation between the S-box and inverse S-box is given
by expression, S7'(S(x)) = x,xe F; .

D. The Bit Permutation (p-layer) and Inverse Bit Permutation
(inv-p-layer) Operations
The bit permutation layer is used to move bit i of the state to
bit position P(i) [9] and it is given by the following expression,

. |i.16mod63, i I {0,...,62}
P(i) = , (D
63,i=63
Similarly, the inverse bit permutation operation is defined by
the below equation,

. {i.16m0d63, je {O,...,62}} ,
P =ij

2
63,i=63 @)
In the following section, some of the work related to the
implementations of the PRESENT cipher is provided.

III. RELATED WORK

An architectural design space exploration for encryption and
decryption operations can be found in [11]. In this Spartan-III
FPGA device based implementation, the encryption and
decryption operations require a total of 373 slices and 423 slices
for the 80-bit and 128-bit key lengths respectively [11]. In
another implementation, a cryptographic co-processor with
encryption and decryption capabilities has been provided by
[12]. In this paper the architectural exploration for serial,
iterative and parallel variants of the cipher has been provided.

For encryption operation, an FPGA-based implementation
of the PRESENT cipher that uses 117 slices of the Xilinx
Spartan-3 XC3S50 FPGA device has been reported in [13].
Here, a throughput of 28.46 Mbps at a maximum frequency of
114 MHz has been obtained. Two different RAM-based
implementations of PRESENT cipher have been provided in
[14]. In the first implementation, the substitution box of the
cipher has been realized into the FPGA slices. In the second
implementation it has been integrated into the RAM. In these
implementations, the first design occupies 83 slices and the
second design consumes 85 slices of the Xilinx Spartan XC3S50
device. These realizations produce a throughput of 6.03 Kbps
and 5.13 Kbps at 100 KHz system clock respectively.

Related to the encryption-only operation, one such
implementation of the PRESENT cipher with 8-bit datapath has
been given in [15]. This design utilizes 62 slices of the Xilinx
Virtex-5 XC5VLXS50 device and provide a latency of 295 clock
cycles with a throughput of 51.32 Mbps at the maximum
frequency of 236.574 MHz. Another implementation using 64-
bit datapath has been reported in [16] that consumes 74 slices of
the Xilinx Spartan-6 XC6SLX16-3CSG324C FPGA device. At
maximum clock frequency of 221.63 MHz and with 33 clock
latency, a throughput of 221.63 Mbps has been obtained. Similar

to this a 64-bit datapath based architecture has been synthesized
on 87 slices of the Xilinx Virtex-5 XC5VLX50 FPGA device
[17]. Here a latency of 47 clocks, maximum frequency of 221.64
MHz and a throughput of 341.64 Mbps have been reported.

As evident from the above, most of the authors have
provided architecture for encryption-only operation and they
have assumed that the decryption operation works opposite to
that of the encryption operation and hence would require
roughly same logic complexities and hardware resources.
However, in our opinion the decryption operation is a bit
complex in comparison to the encryption operation. This is due
to the fact that to start the decryption operation, first we need the
last round key that is generated from the key scheduling
operation. In connection to this, one of the implementations in
which both encryption and decryption operations have been
tackled [11], assumes that last round key is available at the
starting of the decryption operation. They have considered that
the key is static in nature throughout all of the encryption and
decryption operations for all the input blocks. In another
implementation by [17], for PRESENT cipher context it has
been given that the decryption operation requires almost same
area as of encryption when implemented separately. In the
following section, an integrated encryption and decryption
architecture has been proposed and described in detail.

IV. ANINTEGRATED VLSI ARCHITECTURE FOR THE
PRESENT LIGHTWEIGHT BLOCK CIPHER

The proposed architecture for an integrated encryption and
decryption of PRESENT block cipher is shown in Fig. 3. Here,
an iterative type of architecture is considered for saving the
resources and computation time. To implement the PRESENT

block cipher a 64-bit datapath is chosen, mainly to implement
the permutation operation efficiently.

In the proposed architecture there are three main components
which are encryption/decryption engine, key scheduling unit and
controller. There is a 1-bit input signal ‘enc_dec’ which is used
to select the encryption or decryption operations. If ‘enc_dec’ is
at logic ‘1’ level then encryption operation is performed, else the
decryption operation is executed. An up-down counter facilitates
the integrated encryption/decryption operation. The main
building blocks of the proposed architecture have been arranged
in different subsections which are described below.

A. Datapath of the Integrated PRESENT Architecture

As shown in the Fig. 3, the architecture consists of a set of
registers, multiplexers and XOR gates. The bit permutation (1)
and inverse bit permutation operations (2) are simple bit-
transposition, which require only simple wirings. There is one
64-bit multiplexer which is required to switch the state between
the load phase (Input) and the intermediate state. After that the
multiplexer passes the state to a 64-bit state register. This
register is used to store the intermediate state and passes it to the
64-bit XOR gate. This gate performs the XOR operation of
intermediate state coming from the state register with 64-bit
round key coming from the key scheduling unit. In the
architecture, both the S-box (S) and inverse S-box (S/) are
realized by the area-optimized combinational logic
implementation. To differentiate between the encryption and
decryption operations, two 64-bit multiplexers are deployed in
the datapath. In the proposed architecture, the inputs and output
are registered. The output register is added to synchronize the
output with the last round.

>0
64 64
64
| | serk
64 Input ser key
64 enc_dec e, 64 80128
*4 4’f M~y - _'i
5/ . : \ _ (Q/~T——state_gen
B el S ¥ 64 |
I I | mux_sel
B I e
64 | Q g :4— reset — >
enc_dec—/T 0\ : % E‘) IH—— clk
A \ |
< up_down
|
2 1 Y 64
Counter o4 64, T 64, ;
reset— el clk—w Out.put "6"4'5‘
285 —>mux_sel i eady—» Register O:
] clk—> > state_gen -
o enc dec—s] Controller | » yp down
= - s out_ready
round — = key gen

Fig. 3. A VLSI architecture of the PRESENT block cipher for an integrated encryption/decryption operation.

As per the Fig. 3, a total of 33 clock cycles are required for
the encryption operation to get the ciphertext. Out of 33 clock
cycles, the first cycle is used to load the user key and plaintext.
In next 31 clock cycles, 31 intermediate states are computed for
each of the rounds and finally in the last clock cycle output is
available at the output register. Whereas, in the decryption
operation, total 64 clock cycles are required to obtain the first
block of decrypted output. Out of these 64 clock cycles, the 31
clock cycles are required to compute the last round key and 33
clock cycles are required to perform the decryption operation.
Here, the computed keys have been simultaneously stored in a
block RAM (BRAM) so that there is no need to compute the last
round key for other blocks of input. Thus, only 33 clock cycles
are required to decrypt the remaining blocks of ciphertext. The
advantage of using the integrated architecture is that there are
some resources which can be used in both encryption and
decryption operations. The detailed description of the key
scheduling operation is detailed below.

B. Architecture for the Key SchedulingéOperatiOn

Key scheduling unit works on the storage mode. Here, the
computation of the round keys is performed only for the first
block of data and the computed round keys are stored
simultaneously in the BRAM. This computation mode offers
reduced number of clock cycles for the decryption operation.
The key storage mode is also beneficial for processing a large
chunk of data which contains multiple blocks that have to be
encrypted or decrypted with the same key. A detailed description
of the round key computation for both 80-bit and 128-bit key
lengths is given in [9]. The key scheduling unit is shown in the
datapath of Fig. 3. Detailed architectures of the key scheduling
unit for the 80-bit and 128-bit key lengths are given in Fig. 4.

5
5 T round 162
15 &
X ? 53,
S56.° 5
user key user key 4 4
sk Sk
80 80 128 128
I 7
80{ g 128 E
80 data_in data_in 128
address L—»laddress
g@ E enable en enable E g@
e &
80 R write_enable fe— key_gen —write_enable = 128
data_out clk data_out
round key(K;) round key(K))

(@) (b)

Fig. 4. The key-scheduling process in the PRESENT cipher (a) with 80-bit
input key (b) with 128-bit input key.

There are three steps in the key scheduling process. Firstly,
the intermediate key is left-rotated by 61 bits. Then, the first
leftmost 4 bits are passed through one S-box for 80-bit key
length and two S-boxes for 128-bit key length, as shown in the
Fig. 4 (a) and (b) respectively. Finally, in the third step, 5 bits of

the intermediate key are XORed with the counter value and after
that the 80-bit (or 128-bit) key is written to data_in port of the
BRAM. The intermediate key is read out from the data_out port
of the BRAM and first leftmost 64 bits of intermediate key i.e.
round key is XORed with the intermediate state of that particular
round. There are three control signals, ‘en’, ‘key gen’ and
‘mux_sel’ generated by the controller for monitoring the key
scheduling process, which are as shown in the Fig. 4. Alongwith
the BRAM, one 80-bit or 128-bit multiplexer is also used. The
‘mux_sel’ signal is used to switch between the load phase (user
key) and intermediate keys. The ‘key gen’ signal is given to the
write_enable port of the BRAM and it enables the BRAM for
updating its content. The controller which controls the datapath
and the key generation unit is described in the following section.

C. Controller for the Encryption/Decryption Operations

The controller for the integrated encryption/decryption
operation of the PRESENT cipher is given in Fig. 5. To make
the proposed architecture (as in Fig. 3), capable of performing
the encryption and decryption operations for the multiple blocks
with the same user key, an appropriate controlling mechanism is
required. The controller, thus, is designed to provide various
control signals for monitoring the key generation unit and for
controlling the encryption/decryption engine. There are total
nine states in the controller, which are used for performing the
encryption and decryption operations. Out of these nine states,
two states i.e. Start (So) and the Reg_out (Sour) are common for
both the encryption and decryption. In. the first state, So, the
counter is enabled through ‘en’ signal and works as an up
counter by setting the ‘up_down’ signal to logic ‘1°. In this state,
input and the user keys are loaded and the key scheduling unit
starts computation through ‘key gen’ signal which is at logic ‘1°.
In the next clock cycle, the state switches to either S, state or
S;pstate for enc_dec=*1" or ‘0’ respectively.

For controlling the encryption operation given in the Fig. 5,
in the state S;z, multiplexers are switched as ‘mux_sel’ signal for
the key scheduling unit gets logic ‘1’ and the signal ‘state gen’
for the datapath gets high so the encryption of first block of
plaintext begins in this state. Simultaneously, all the generated
round keys are stored in the BRAM. The state remains in Sz,
until the counter value reaches 31. Then, the state switches to
Sour state, where the counter is disabled through en=‘0" and
‘out_ready’ signal becomes logic ‘1°. In this state the key
generation unit finishes its computation operation and it is only
used for fetching the stored round keys. So, here, the ‘key gen’
signal is kept at logic ‘0’. In the next clock cycle, first block of
ciphertext is available through the output register.

Further, for the encryption of other blocks of plaintexts, the
state switches to the S, state. In this state, other blocks of
plaintext are loaded to the state register. This state is very similar
to the initial state So, except that now there is no need to compute
the round keys as they have already been stored in the BRAM.
So, here, ‘key gen’ signal is at logic ‘0. After that, the state
switches to the S3; state. The state S3y is similar to the state S,z
except for the condition when ‘key gen’ signal changes to logic
‘0’. When the counter value reaches at 31, the state switches to
the output state Sour. This cycle continues till all the blocks of
plaintexts are encrypted.

Encrypt 1"
plaintext (Sg) state_gen="1"
. key gen=°1"

up_down=*1"

Load other
plaintexts (Se)

q°

<0’

gen

mux_sel=1"
state_gen="1"
key_gen=0"

state_
key gen

Decrypt
(Ssp)

en="1"
up_down="1"
key_gen="1"

ne_depo

D%

mux_sel=1"
state_gen="0"
key_gen=‘1"

Load other
ciphertexts (Sap,

up_down=°0’
key_gen=0’

Load 1*
ciphertext (Sap)

up_down
key_gen=1"

Fig. 5. Controller for the integrated encryption and decryption operations.

In the processing of the decryption operation, which is
shown in the Fig. 5, the state switches at Sip from the initial state
So. In the state Sip, all the round keys are computed and stored
in the BRAM. In this state, the decryption process does not start
as the ‘state_gen’ signal is at logic ‘0’. When the counter value
reaches to 30, the state is switched at Sp state. Here, first bock
of ciphertext is loaded to the state register and now the counter
starts to work as down counter by switching the ‘up_down’
signal to logic ‘0. Further, the state is switched to S;p state,
where the decryption process starts by assigning the “stare - gen’
signal to logic “1°. Further, the key generation unit completes its
computation operation with the ‘key_gen’ signal becoming logic
<0’. As counter value becomes 0, the state switches to the final
state Sour and first block of decrypted ciphertext is available

TABLE L DEVICE UTILIZATION SUMMARY ON THE XILINX VIRTEX-5

XC5VLX110T FPGA DEVICE.
) Resource Resource
Eiisfisits }/ievalla;ble Utilization Utilization
sources PRE 80 PRE_128
LUTs 69120 348 396
Registers 69120 137 137
Total Slices 17280 126 150

The performance of the design is evaluated in terms of power
dissipation, latency, maximum frequency and throughput. The
performance of the proposed architecture is given in Table II.

TABLE 1. PERFORMANCE ON THE XILINX VIRTEX-5 XC5VLX1 10T FPGA

through the output register as ‘out_ready’ signal becomes logic
“1”. Next, to decrypt the remaining blocks of ciphertext the state
does not go back to the initial state because pre-computed round
keys are available in the BRAM. So, the state moves to Syp state,
which is very similar to the state S2p except that ‘key_gen’ signal
is at logic “0”. In this state, other blocks of ciphertext are loaded
into the state register. To perform the decryption operation for
the rest blocks, the state switches to the Ssp state. This cycle

DEVICE.
Resource Resource
Elements Utilization Utilization
PRE 80 PRE 128
Latency 33 33
Max. frequency (MHz) 215.42 212.13
Throughput (Mbps) 417.79 411.41
Efficiency (Mbps/4Slices) 332 2.74
Power (mW) 16.59 16.80

continues until all the blocks of ciphertext are decrypted.

V. EXPERIMENTAL RESULTS FOR AN FPGA DEVICE

The proposed architecture is implemented in the VHDL
language, and synthesized using Xilinx Design Suite 14.7 for the
Xilinx Virtex-5 XC5VLX110T-1-FF1136 FPGA device on
Xilinxk ML-505 platform. The synthesis process for the
implementation has been configured with design goal as
balanced and strategy as Xilinx default. The FPGA device
utilization summary of the proposed architecture is given in
Table L.

As per the table, the architecture with 80-bit key (PRE_80)
is consuming only 0.73% slices while the proposed architecture
with 128-bit key (PRE_128) is consuming 0.87% slices. The
PRE_80 architecture consumes 32 x 80 bit size block memory,
whereas, the PRE_128 architecture needs 32x128 bit size of
memory to store the intermediate keys.

As given in the Table II, the architecture is consuming
around 16 mW power at 215 MHz frequency. Both the
operations have a latency of 33 clock cycles. However, the
decryption operation requires an additional 33 cycles for round
key generation for the first block of ciphertext. Throughput of
the design is found to be around 410 Mbps for both the key
lengths, that is computed for 64-bit datapath by expression,
throughput = (max. frequency x total no. of bits)/latency.

To compare the proposed design with an existing design
available in literature, the selected design metrics are: slice
LUTs, registers and total number of consumed slices. To
perform a comparison at the architectural-level, the proposed
integrated architecture is tuned to match the architectural
capability of [11]. Therefore, for the comparison the key
scheduling unit is implemented using on-the-fly mode rather

than storing the computed keys in the BRAM. The following
section shows an architectural-level comparison between the
proposed design and the design of [11].

A. Architectural-level Comparison

The architecture presented in [11] is one of a few established
papers which provides decryption operation for the FPGA. The
implementation of the architecture [11] has been done on the
Xilinx Spartan-IIIXC3S400 FPGA device. Thus, to perform a
fair comparison of utilized device resources, we have targeted
the same FPGA device and equal speed grade. Similar to [11],
we also kept the synthesis tool project design goals and
strategies with synthesis and place and route (PnR) effort
properties as high and the PnR extra effort at continue on
impossible. The implementation has been performed for both
80-bit key length (PRE_80) and 128-bit key length (PRE 128).
The synthesis results for both the architectures are compared and
is shown in Fig. 6. =

Architectural-level Comparison

=

2 ®mLUTs «Registers # Slices

&

: g . B

@ < Al v N

& San BSY .32

oq = &

@ aN == g

g =] -]

<

& ENC DEC Total PRE 80 ENC DEC Total PRE 128
[11] Ours [11] Ours :
80-bit Cipher 128-bit Cipher

Fig. 6. Architectural-level comparison between architecture of [11] and the
proposed architecture using Xilinx Spartan-I11 XC3S400 FPGA device.

All the data presented in Fig. 6, are from the post place and
route (PnR) report. It can be observed from the above figure that
in comparison to the implementation reported in [11], the
proposed architecture with 80-bit key length (PRE_80) requires
12.6% lower FPGA slices and with 128-bit key length
(PRE_128) consumes 9.7% lesser slices. By this we can say that
the proposed integrated architecture is capable of performing
both the encryption (ENC) and decryption (DEC) by the same
set of hardware, which is an essential requirement in any
practical lightweight cipher-based system. Also the integrated
architecture consumes lesser slices in comparison to two
separate modules for performing encryption and decryption. It
can be noted that our design requires an extra clock cycle in
comparison with [11] to perform the operations as we have
considered the registered output.

VI. CONCLUSION

An integrated VLSI architecture for PRESENT lightweight
block cipher has been presented. The architecture supports both
the encryption and decryption operations with 80-bit and 128-
bit key lengths. The design has been modeled in the VHDL
language and synthesized in the Xilinx Virtex-5 XC5VLX110T-
1-FF1136 FPGA device on ML-505 platform. The presented
architecture utilizes 0.73% and 0.87% of FPGA slices for 80-bit
and 128-bit key length respectively. Throughput of the design is
around 410 Mbps and power consumption is around 16 mW for
both the key lengths. Thus, the proposed architecture is area-
efficient with high-performance capability for providing an

adequate level of security under the resource-constrained
environment for IoT and CPS applications.

REFERENCES

[1] E.A. LeeandS. A. Seshia, Introduction to Embedded Systems, A Cyber-
Physical Systems Approach, 2011.

[2] T.Xu,J. B. Wendt and M. Potkonjak, “Security of IoT systems: Design
challenges and opportunities,” in JEEE/ACM Int'l Conf on Computer-
Aided Design, San Jose, California, pp. 417-423, 03 Nov. 2014.

[3] A. Biryukov and L. Perrin, “Lightweight Block Ciphers,” [Online].
Available:
https://www.cryptolux.org/index.php/Lightweight_Block Ciphers.
[Accessed 06 Jan. 2017].

[4] K. McKay, L. E. Bassham, M. S. Turan and N. W. Mouha, “NISTIR
8114 - Report on Lightweight Cryptography,” National Institute of
Standards and Technology (NIST), Gaithersburg, March 2017.

[S] B.J. Mohd, T. Hayajneh and A. V. Vasilakos, “A survey on lightweight
block ciphers for low-resource devices: Comparative study and open
issues,” Journal of Network and Computer Applications, vol. 58, pp. 73-
93,2015.

[6] T. Eisenbarth, S. Kumar, C. Paar, A. Poschmann and L. Uhsadel, “A
survey of lightweight-cryptography implementations,” /EEE Design &
Test of Computers, vol. 24, no. 6, pp. 522-533, 2007.

[71 A. Y. Poschmann, “Lightweight cryptography: cryptographic
engineering for a pervasive world,” PH. D. Thesis, Ruhr-University,
Bochum, Germany, 2009.

[8] “Information technology — Security techniques — Part 2: Block ciphers,”
Jan. 2012.

[9] A.Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J.
B. Robshaw, Y. Seurin and C. Vikkelsoe, “PRESENT: An ultra-
lightweight block cipher,” in Int'l Workshop on Cryptographic
Hardware and Embedded Systems, Vienna, Austria, Springer, pp. 450-
466, 2007.

[10] Xilinx Inc., “Virtex-5
www.xilinx.com, 2012.

FPGA user guide UGI9 (v5.4)~

[11] M. Sbeiti, S. Michael, A. Poschmann and C. Paar, “Design space
exploration of present implementations for FPGAS.” in 5th Southern
Conference on Programmable Logic (SPL), Sao Carlos, Brazil, pp. 141-
145, 1-3 April 2009.

[12] C. Rolfes, A. Poschmann, G. Leander and C. Paar, “Ultra-lightweight
implementations for smart devices—security for 1000 gate equivalents,”
in /nt'l Conf. on Smart Card Research and Advanced Applications,
London, UK, pp. 89-103, 08-11 Sep. 2008.

[13] P. Yallaand J. P. Kaps, “Lightweight cryptography for FPGAs,” in [EEE
Int'l Conference on Reconfigurable Computing and FPGAs
(ReConFig'09), Cancun, Mexico, pp. 225-230, 09 Dec. 2009.

[14] E. B. Kavun and T. Yalcin, “RAM-based ultra-lightweight FPGA
implementation of PRESENT,” in Int'/ Conf on Reconfigurable
Computing and FPGAs (ReConFig'l1), Cancum, Mexico, pp. 280-285,
30 Nov-2 Dec 2011.

[15]J. J. Tay, M. L. D. Wong, M. M. Wong, C. Zhang and 1. Hijazin,
“Compact FPGA implementation of PRESENT with Boolean S-Box,” in
6th Asia Symp. on Quality Electronic Design (ASQED), Kula Lumpur,
Malaysia, pp. 144-148, 04 Aug. 2015.

[16] C. A. Lara-Nino, M. Morales-Sandoval and A. Diaz-Perez, “Novel
FPGA-based low-cost hardware architecture for the PRESENT block
cipher,” in 2016 Euromicro Conference Digital System Design (DSD),
Limassol, Cyprus, pp. 646-650, 31 Aug. 2016.

[17] N. Hanley and M. O'Neill, “Hardware Comparison of the ISO/IEC
29192-2 Block Ciphers,” in IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), Amherst, MA, USA, pp. 57-62. 19-21 Aug. 2012.

