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Abstract— RF MEMS switches are small in size, consume low
power and have good RF response. However, the field
deployment of RF MEMS switches is restricted due to limited
power handling capability and reliability issues. In literature,
power handling is improved through contact area either by
adding hard materials or increasing the thickness. In the present
paper, calculations for contact area versus stiction forces are
performed and RF MEMS ohmic switch with optimal contact
area is proposed. The power handing of RF MEMS switch is
increased by 55.86 % without addition of new material or
processing steps. Insertion loss and return loss of the switch are
also improved using corner compensation.

I. INTRODUCTION

M INIATURIZATION in the wireless communication and
demand of low power consumption has resulted in
development of RF MEMS technology. RF MEMS devices
have superior RF performance and lower power consumption
compared to solid state devices. The MEMS switches in
particular are basic elements in these devices like antenna,
phase shifter, filters etc. Electrostatic RF MEMS switches
consume almost zero power and best suited for satellite
communication applications. Communication systems in
satellite and radar based applications, use coaxial switches and
waveguides which offer good RF behavior but have
disadvantages of size and weight. RF MEMS switch is viable
replacement for both solid state and co-axial system in term of
RF performance and size. However, RF MEMS devices have
basic limitations of reliability and low power handling which
restricts its utilizations in high power applications. The power
carrying capability is limited by two major factors namely:
‘self-actuation’ and ‘electromigration’. In self-actuation,
switch changes its state from ‘ON°‘ to ‘OFF’ or vice-versa
without external biasing. Such problems prevail in the
switches which have common DC and RF signals [1], [2].
Problem is solved by using separate DC and RF signals or
adding pull-up electrodes[3] [4], [5]. Another solution [6] is to
use additional top electrode to compensate self-actuation
problems but that requires double sacrificial and hanging
structures which increases the process complexities. Floating
metal [7] [8] is also used to overcome self-actuation
mechanism. Power handling by self-actuation is addressed
successfully and not explored in current paper.
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The second component for power handling is
electromigration refers to mass transport in metal when
subjected to high current density. One way to tackle
electromigration is to increase the thickness of the structure
[9], [10] which leads to high pull-in voltage (80-90 V).
Research[11]-[14] is also going on development of hard/high
power handling materials to increase the power handling but
that increases the contact resistance and requires additional
processing. However, designing part of contact bumps is not
much explored in the literature. In this paper, contact analysis
to improve the power handling of RF MEMS devices is
performed. The novelty of the proposed approach is that it
does not require any special material development or
processing cost to increase the power handling.

II. CONTACT AREA

Most of the MEMS switches are prone to stiction[7], [15],
[5], [16] and electromigration[11], [13], [14]. Magnitude of
both electromigration and stiction forces are directly
proportional to contact area. Decrease in contact area reduces
the power handling whereas increase in contact area enhances
the stiction probabilities. Therefore, contact area needs to be
optimized. In order to find the optimal contact area, a
comparative study of stiction and restoring forces is done as
follow.

A. Stiction Force

The failure of most of the MEMS devices is primarily due
to stiction which need to be addressed. Three major stiction
forces are capillary condensation, Van der Waals and
electrostatic, each of which scales up with surface area as
discussed below:

A.1. Capillary energy per unit area [17]
E, :IZycos(H)h(z)dz (1)

z is roughness elevation, [ is the surface tension of water, h(z)
is roughness distribution function and [ is the contact angle.

A.2. Van der Waals energy per unit area [17]
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Ay is the Hamaker constant




A.3.Electrostatic energy per unit area [18]
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€ and d are dielectric constant and thickness of oxide, and V is
potential difference.

Among these forces[17], magnitude of Van der Walls force
lies in the range of 10-10 to 10-12 pJ/um?2 which is too small
to be neglected. Electrostatic stiction is due to impurity
charges in the oxide those magnitude is also small and
neglected. Third and most effective stiction force is capillary
force those magnitude lies in the range of 5 X10-9 to 10-9
w/um2 at relative humidity of 30-60%. The estimation of
optimal contact area is done based on capillary and restoring

)

force.

B. Restoring Energy

Restoring force of the mechanical device is determined in
term of structural stiffness which is function of spring constant
given by
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k is spring constant, and x is displacement of the beam.
For the given structure, x=2 pm
And k= 04 N/m from
Coventorware.

Hence maximum restoring energy Eg = 0.8x10uJ.

For 60% humidity, maximum possible contact area is given by

0.8X107°
X107

Be on safer side, contact area close to 140 um” is chosen.

simulations performed on

Area =

=160um’

III. CONTACT AREA OPTIMIZATION

Bumps are made at contact area to prevent stiction and most of
the bumps are square and circular in shape [11], [13], [14],
[24], [25]. However, sharp corners in square bump results in
high current density which lower the power handling (power
handling is directly proportional to square of the current). In
order to avoid sharp corners, circular bumps are proposed [26]
which handles more power. Based on current distributions as
shown in Fig. 1, current density at circular bumps is decreased
by 7.27 % compared to square bumps which leads to 13.85 %
higher power handling. As, most of current flows across
edges of the switch as shown in Error! Reference source not
found. (a), bumps from central part of the structure can be
removed. However, central support is required for mechanical
stability to keep the structure tip straight. Hence, we have
proposed non-uniform bumps across the switch in hourglass
manner as shown in Error! Reference source not found. (b).
Total contact area is kept close to 140 um2 as shown in
Error! Reference source not found.. The radius of the
circular bumps is increased from 1 um at center to 2 pum in
middle and 4.25 um at edge. Hourglass shaped bumps have
28.33% lower current density as compared to uniform circular

bump which leads to 48.77 % higher power handling. On
comparing with square bumps, hourglass shaped bumps have
55.86% more power handling capability.
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Fig. 1. Bump current density distribution of RF MEMS switch
for (a) square, (b) circular shapes.
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Fig. 2. Current flow distribution across the cantilever switch
with uniform circular bump and (b) modified circles in hourglass
arrangement.
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IV. CHARACTERIZATION

Electromagnetic characterizations of the RFE MEMS ohmic
switch are performed on High Frequenty Structure Simulator
(HFSS). Response of the switch is better than solid state
counterparts. Due to sharp corner, response of the switch with
square shaped bumps is inferior compared to others
configuration. However, insertion loss and isolation of the
switch is better than 0.06 dB and 20 dB respectively for DC to
15 GHz as shown in Error! Reference source not found..
Return loss of the switch is more than 40 dB for all the cases.
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Fig.4. ‘ON’ state (a) insertion, return loss and ‘OFF’ state (b)
isolation of the switch. Conclusion

A novel configuration of bump for RF MEMS ohmic switch
shape is designed. Optimal contact area is selected based on
stiction and restoring force which comes out to be 160 pm? for
selected switch. Power capacity the switch is increased by
55.86 % without adding any material or fabrication step.
Insertion loss, return loss and isolation of the switch are better
than 0.06 dB, 40 dB and 20 dB respectively for DC to 15 GHz
applications.
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