
A Lifting Instruction for Performing DWT in LEON3

Processor based System-on-Chip

Rajul Bansal1,2, Mahendra Kumar Jatav2 and Abhijit Karmakar1,2

1 Academy of Scientific and Innovative Research (AcSIR), CEERI Campus, Raj, India 333031
2 CSIR - Central Electronics Engineering Research Institute (CEERI), Pilani, Raj, India 333031

Abstract. Discrete Wavelet Transform (DWT) calculations form an inherent

part of many signal processing applications. Application specific instructions

provide a means to increase performance and efficiency of System-on-Chip

(SoC) requiring DWT operations. In this paper, lifting scheme based hardware

for efficient DWT calculation, is implemented as an instruction to enhance the

performance of an SoC. The hardware is integrated using the coprocessor inter-

face of the SPARCv8 ISA based LEON3 processor. This method for attaching

lifting hardware is found to be much more efficient than the prevalent system-

bus based integration. The performance measure is provided in terms of CPI

and MIPS along with FPGA and ASIC implementation results of the SoC.

Keywords: Lifting Scheme, DWT, LEON3, SPARCv8, System-on-Chip, SoC.

1 Introduction

Application specific instructions of extensible processor as well as coprocessor exten-

sions of any processor, provide significant area and performance improvements by

introducing application specific hardware functionality [1]. Custom instructions re-

quire architectural modification of processor pipeline that necessitates time consum-

ing reverification of entire processor pipeline. Contrary to this, a coprocessor exten-

sion enables addition of application specific hardware as coprocessor instructions,

without the need for modifying existing processor pipeline. It is reasoned that custom

instructions are suitable for fine grained operations whereas coprocessor extensions

are best suited for coarse grained tasks [2]. In this paper, we have proposed an archi-

tecture for computation of Discrete Wavelet Transform (DWT), incorporating lifting

scheme [3] based custom hardware coprocessor instructions.

DWT is used in modern day audio, video, image and various signal processing ap-

plications due to inherent benefits, such as, multiresolution representation, sequential

processing [4] and absence of blocking artifacts noticeable in Discrete Cosine Trans-

form (DCT) based image processing. SoCs catering to advanced applications ranging

from compressing 3D data such as that of an MRI scan [5] to combustion failure de-

tection of IC engines through vibration signal analysis [6], demand higher processing

and low power requirement. Thus, making efficient hardware implementation a ne-

cessity rather than a requirement.

2

Most of the lifting-based architectures, including some of the recent ones [7-9], fo-

cus on memory reduction, throughput, latency, cycle count, pipeline equalization,

frequency of operation, hardware utilization, area and low power. However, the effect

of their integration in a modern SoC environment and corresponding results have not

been provided. Our paper presents a case where lifting hardware is integrated as an

instruction in the open source LEON3 processor pipeline, utilizing the coprocessor

interface rather than the standard bus-based approach. The performance analysis is

computed and compared both at software as well as hardware implementation level.

2 Lifting Hardware

Discrete wavelet transform gained widespread use for various signal processing ap-

plications after the proposition of lifting scheme by W. Sweldens [3] that reduced the

hardware requirement for wavelet filter implementation by half. In this paper, we

have implemented the lifting hardware for one dimensional, single level DWT and

integrated it as an application specific custom coprocessor instruction, in order im-

prove the system level performance.

In our work, a lossless (5, 3) filter is chosen as the wavelet filter for implementa-

tion. After breakup of poly-phase matrix and converting it to banded matrices multi-

plications, the final spatial domain equations formed after all the mathematical steps

[3], can be written as (1) and (2) where j represents the DWT level and i represents

indexing of input samples. Based on these lifting equations, the designed hardware

constituting three lifting steps namely: Split, Predict and Update is as shown in Fig. 1.

 oddj+1,i = oddj,i - (evenj,i + evenj,i+1)/2 (1)

 evenj+1,i = evenj,i + (oddj+1,i-1 + oddj+1,i)/4 (2)

Fig. 1. Lifting hardware

3 Integration with LEON3 Processor

The integration of lifting hardware with SPARCv8 compliant 7-stage pipelined

LEON3 processor is accomplished using only the load, store and operate coprocessor

instructions. In the detailed integration diagram shown in Fig. 2, FE, DE, RA, EX,

MA, XC and WB represent fetch, decode, register access, execute, memory access,

3

exception and write back stages of the LEON3 pipeline. Among the seven stages,

control signals only from decode, execute and exception stages are required for lifting

coprocessor integration. The signal, cpo_store is the only output and carries the store

data back to integer unit which is subsequently stored back to data cache and in turn

to RAM. The cpi_lddata carries data from data cache or RAM, to be loaded in the

coprocessor register file.

Fig. 2. Integration of lifting hardware with LEON3 pipeline

The lifting hardware gets read data from register file only when coprocessor oper-

ate instruction is issued. The resulting H and L are saved back to register file in alter-

nate cycles. Since DWT in an in-place transform, the input data values can be over-

written and as a result, 32 samples can be operated upon in a single sequence of co-

processor instructions. In case, there is a situation when LEON3 pipeline gets stalled,

the stalled status of the processor pipeline is forwarded through holdn signal, upon

whose arrival the control unit stalls the lifting hardware and prevents loss of synchro-

nization. This is required only when performing coprocessor load and store that must

be synchronized with respective stages in the LEON3 pipeline. However, if LEON3

pipeline gets stalled during the coprocessor operate instruction, the lifting hardware

operations proceed without any pause and this parallel execution of both the pipelines

increases the CPI of the system.

4

4 Performance Analysis and Comparison

System modelling has been done on TSIM2 Instruction Set Simulator (ISS) at higher

abstraction level for faster execution of application codes. The application code per-

forms single-level, one-dimensional DWT of an image using coprocessor instructions

integrated as assembly code snippets in the embedded C code of the application. To

compare the results of our implementation, we have modelled three different SoC

configurations. The first configuration (Config 1) computes the DWT operation using

generic SPARCv8 instructions i.e. without custom lifting instructions. Config 2 com-

putes the same using the proposed custom lifting hardware instructions, whereas,

Config 3 computes the same through lifting hardware attached via AHB system bus

with requisite bus interface logic.

Based on the results shown in Table 1 for various sizes of an image, Config 2 pro-

vides an average of 30% reduction in number of cycles from pure software based

implementation and 18% reduction in number of cycles from bus-based implementa-

tion. The percentage of reduction in number of cycles increases for larger image sizes.

Moreover, for DWT using custom instructions, the number of cycles, instructions,

CPI and Million Instructions Per Second (MIPS) are found to be better than both Con-

fig 1 and Config 3. It is further seen from Table 1 that the CPI/MIPS benefits grow

with increase in the size of the image in case of designs with custom lifting instruc-

tions, whereas the CPI/MIPS values remain almost the same for DWT operations

done using generic SPARCv8 instructions. It can be reasoned that as the image size is

increased, the percentage of coprocessor instructions in the machine code increases,

which subsequently causes the decrease of CPI values.

Table 1. Cycles per Instruction (CPI) performance

Image

Size
Parameter

DWT using generic

SPARCv8 instructions

DWT using custom

instructions

AHB bus coupled

hardware based DWT

32x32 Cycles / Instructions 114992 / 47456 78650 / 36121 94183 / 42593
CPI / MIPS 2.42 / 41.23 2.18 / 45.93 2.21 / 45.22

64x64 Cycles / Instructions 323771 / 130210 178494 / 85340 237035 / 111012

CPI / MIPS 2.49 / 40.22 2.09 / 47.81 2.14 / 46.83
128x128 Cycles / Instructions 1148029 / 460068 570390 / 283678 800963 / 386150

CPI / MIPS 2.49 / 40.07 2.01 / 49.73 2.07 / 48.21

256x256 Cycles / Instructions 4424701 / 1777188 2116118 / 1073182 3034819 / 1482854
CPI / MIPS 2.49 / 40.16 1.97 / 50.71 2.05 / 48.86

512x512 Cycles / Instructions 17490685 / 7041060 8261142 / 4228126 11932355 / 5866598

CPI / MIPS 2.48 / 40.25 1.95 / 51.18 2.03 / 49.17

Table 2. FPGA and ASIC synthesis results

Parameter
Standard design

(Config 1)

With custom

instruction (Config 2)

With bus-based

integration (Config 3)

No. of slice registers (93296) 5666 5963 6014
No. of slice LUTs (46648) 20891 21210 21311

No. of RAM blocks (172) 42 46 46

FPGA Power (mW) 310 306 314
Total ASIC cell area (um2) 12758050 12879652 12884508

ASIC Power (mW) 549.1 554.9 555.7

5

The three design cases are also implemented in HDL targeting Spartan 6

XC6SLX75 FPGA device using Xilinx ISE 13.4. They are further targeted for stand-

ard cell based ASIC flow using UMC 180nm based Faraday standard cell library.

Synthesis results presented for both in Table 2 show that there is only a slight increase

in resource utilization on integrating additional lifting hardware and this increase can

be justified for the amount of performance improvement it provides. Moreover, the

increase in the hardware is lesser than the traditional integration approach using sys-

tem bus. This is because of reduced address decode and control logic within the arbi-

ter unit of AHB bus. The proposed integration achieves lower power consumption

than the bus-based design making it power efficient as well.

5 Conclusion

In this paper, we have presented a unique case where lifting hardware is integrated as

an instruction in a processor pipeline utilizing the coprocessor interface. Analysis of

results suggest that the proposed hardware modification provides significant perfor-

mance and power benefits. The lifting hardware that is integrated in our design can be

used recursively to implement multilevel as well as multidimensional DWT. Moreo-

ver, a dual scan architecture can also be integrated to achieve higher hardware utiliza-

tion and further performance benefits can be attained.

References

1. S. O'Melia and A. J. Elbirt: Enhancing the Performance of Symmetric-Key Cryptography

via Instruction Set Extensions. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems 18(11), 1505-1518 (2010).

2. F. Sun, S. Ravi and N. K. Jha: A Synthesis Methodology for Hybrid Custom Instruction

and Coprocessor Generation for Extensible Processors. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems 26(11), 2035-2045 (2007).

3. W. Sweldens: The Lifting Scheme: A Custom-Design Construction of Biorthogonal

Wavelets. Applied and Computational Harmonic Analysis 3(2), 186-200 (1996).

4. V. M. Potdar, S. Han and E. Chang: A survey of digital image watermarking techniques.

In: IEEE International Conference on Industrial Informatics, (2005).

5. W. Badawy, M. Weeks, G. Zhang, M. Talley and M. A. Bayoumi: MRI Data Compression

Using a 3-D discrete wavelet transform. IEEE Engineering in Medicine and Biology

Magazine, 21(4), 95-103 (2002).

6. F. A. Shirazi and M. J. Mahjoob: Application of Discrete Wavelet Transform (DWT) in

Combustion Failure Detection of IC Engines. In: International Symposium on Image and

Signal Processing and Analysis ISPA, (2007).

7. B. K. Mohanty, A. Mahajan and P. K. Meher: Area- and power-efficient architecture for

high-throughput implementation of lifting based 2-D DWT. IEEE Transactions on Circuits

and Systems-II: Express Briefs 59(7), 434-438 (2012).

8. W. Zhang, Z. Jiang, Z. Gao and Y. Liu: An efficient VLSI architecture for lifting-based

discrete wavelet transform. IEEE Transactions on Circuits and Systems II: Express Briefs

59(3), 158-162 (2012).

9. Y. Hu and C. C. Jong: A memory-efficient high-throughput architecture for lifting-based

multi-level 2-D DWT. IEEE Transactions on Signal Processing 61(20), 4975-4987 (2013).

