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Abstract. Lightweight cryptography plays an essential role for emerging authen-
tication-based pervasive computing applications in resource-constrained envi-
ronments. In this paper, we have proposed resource-efficient and high perfor-
mance VLSI architectures for PRESENT block cipher algorithm for the two key 
lengths 80-bit and 128-bit, namely PRESET-80 and PRESENT-128. The FPGA 
implementations of these architectures have been done on LUT-6 technology 
based Xilinx Virtex-5 XC5VFX70T-1-FF1136 FPGA device. These architec-
tures have latency of 33 clock cycles, run at maximum clock frequency of 306.84 
MHz and provide throughput of 595.08 Mbps.  They have been compared with 
the two different established architectures. It has been observed that the 
PRESENT-80 architecture consumes 20.3% lesser FPGA slices and there is gain 
of 25.4% in throughput. Similarly, the PRESENT-128 architecture requires 
20.7% lesser FPGA slices alongwith a reduction in the latency by 27.7% and an 
overall increase of throughput by 69.1%. 

Keywords: Lightweight cryptography, PRESENT, block cipher, VLSI archi-
tectures, FPGAs. 

1 Introduction 

The modern-day cyber physical systems (CPS) and internet of things (IoT) infrastruc-
tures heavily rely on extensive deployment of tiny computing devices for sensing, com-
puting, controlling and communication purposes [1], [2]. Scope of these devices is 
widespread; ranging from consumer items to virtually anything. These devices form a 
pervasive computing infrastructure with an intelligent ecosystem. Uninterrupted system 
availability, minimal power consumption, adequate level of data security, resource-ef-
ficient hardware architectures, low cost and quick time-to-market are the essential de-
sirables of this ecosystem. Insatiable demands on the system design metrics make the 
system development task more complex and challenging. 

In emerging applications such as smart cities, smart grid, electronic bank transac-
tions, digital locker, connected cars, etc., secure communication is utmost essential. It 



2 

requires a mechanism, which ensures that unauthorized persons or machines cannot 
access the communicated information. For securing electronic data communication, 
cryptography plays an essential role. It is a technique which ensures secrecy and the 
authenticity of electronic data transfer in any insecure channel. In cryptography, the 
encryption operation is used to convert data into a secure form, known as ciphertext. 

The cryptographic process is used for authentication in many emerging applications 
such as in bank cards, wireless telephones, e-commerce, pay-TV, prepaid telephone 
cards, e-cash cards, etc. It is also used for making the access control in many systems 
such as car locks, lifts, metro-trains, electronic gadgets and many other form of embed-
ded systems. In these omnipresent smart devices, there is always a need of high perfor-
mance implementation of lightweight cryptographic algorithms for ensuring security in 
resource constrained environment. Hardware-based security solutions with symmetric 
key cryptography algorithms are ideally suited to meet the IoT security challenges for 
very low area and energy requirements [2]. Thus, resource-constrained hardware archi-
tectures of lightweight ciphers are very essential.  

A systematic survey of lightweight-cryptography ciphers and their software and 
hardware implementations can be found in [3]. In the survey it has been emphasized 
that efficient implementation of the ciphers are closely dependent on the selection of 
appropriate architectures as they result in low implementation complexity and high per-
formance in actual realization. In the context of lightweight cryptography, ISO/IEC 
29192-2 has standardized symmetric block cipher algorithm PRESENT in the year 
2012 [4]. It provides adequate security goals alongwith hardware-oriented performance 
attributes which makes it a prominent choice for developing lightweight cryptographic 
applications [5]. FPGA-based platforms have been commonly deployed for architec-
tural exploration, rapid prototyping and quick evaluation of area-performance tradeoffs 
across different set of architectures. In this context some of the architectures for the 
PRESENT cipher and their FPGA implementations have been described below. 

 
1.1 Related Work 

The architectural exploration for the PRESENT block cipher with serial, iterative and 
parallel variants has been given in [6]. Further, an investigation of the architectural de-
sign space exploration using Spartan-III FPGA can be found in [7]. An FPGA imple-
mentation of PRESENT cipher has been reported in [8] that uses 117 slices of the Xilinx 
Spartan-3 XC3S50 FPGA device. Here, a throughput of 28.46 Mbps has been obtained 
at the maximum frequency of 114 MHz. Two different RAM-based implementations 
of PRESENT cipher have been provided in [9]. In the first implementation, the substi-
tution boxes have been realized within the FPGA slices, and in the second implemen-
tation they have been integrated into the same RAM block used for state storage. Here, 
the first design occupies 83 slices and the second design consumes 85 slices of Xilinx 
Spartan XC3S50 device. These realizations produce throughput of 6.03 Kbps and 5.13 
Kbps at 100 KHz system clock respectively. In another implementation, 8-bit datapath 
based implementation of the PRESENT cipher has been provided in [10]. The design 
consumes 62 slices of the Xilinx Virtex-5 XC5VLX50 device and provides latency of 
295 clock cycles with a throughput of 51.32 Mbps at the maximum frequency of 
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236.574 MHz. One of the implementations using 64-bit datapath, which utilizes 74 
slices of the Xilinx Spartan-6 XC6SLX16-3CSG324C FPGA device has been provided 
in [11]. Here, at maximum clock frequency of 221.63 MHz and with 33 clock latency, 
a throughput of 221.63 Mbps has been obtained. Similar to this a 64-bit datapath based 
architecture has been synthesized on 87 slices of the Xilinx Virtex-5 XC5VLX50 FPGA 
device in [12]. Here latency of 47 clocks, maximum clock frequency 221.64 MHz and 
a throughput of 341.64 Mbps have been reported. In the following section we provide 
contributions of this paper. 

 
1.2 Our Contributions 

In this paper we propose an efficient VLSI architecture for PRESENT block cipher. 
Based on the key length of 80-bit and 128-bit, we provide two different variants of the 
architecture. These architectures are represented as Proposed_80 and Proposed_128 
respectively. In both the architectures, the required S-box(S) is realized by an area-
optimized combinational logic datapath. These architectures are synthesized on Xilinx 
Virtex-5 XC5VFX70T-1-FF1136 FPGA device. The first architecture (with 80-bit key) 
utilizes 0.51% FPGA slices and the second architecture (with 128-bit key) uses 0.62% 
of FPGA slices. Here, both the architectures have latency of 33 clock cycles, runs at 
maximum clock frequency of 306.84 MHz and provides throughput of 595.08 Mbps. 

 Further, the proposed architectures are compared with the established architectures 
of [11] and [12] with 6-input look-up table (LUT-6) technology based FPGAs [13]. 
Here, the standard platform and the devices with the same device family alongwith the 
same speed grades are considered for comparisons. For this purpose, the architectures 
are synthesized on two different FPGA devices of LUT-6 based technology. These de-
vices are Xilinx Spartan-6 XC6SLX16-3CSG324C [11] and Virtex-5 XC5VFX50 [12] 
FPGAs. By experimental results it is found that in comparison to the architecture of 
[11], the Proposed_80 consumes 20.3% lesser FPGA slices and there is a gain of 25.4% 
in throughput. Similarly, in comparison to 128-bit key architecture [12], it requires 
20.7% lesser FPGA slices and reduction in the latency by 27.7% thus, an overall in-
crease of throughput by 69.1% is observed. 

Rest of this paper is organized as follows: in Section 2, an overview of the PRESENT 
algorithm is given. Section 3 is used to describe the proposed architecture for the 
PRESENT cipher alongwith the detail description of various basic building blocks. 
Section 4 is used to provide experimental results and comparisons with the established 
architectures. Finally, conclusions are drawn in Section 5. 

2 The PRESENT Algorithm 

The PRESENT algorithm operates on block size of 64-bit. It supports two key lengths 
of 80-bit and 128-bit. The algorithm is based on the SP-network and consists of 31 
rounds [5]. Each of the 31 rounds consist of an XOR operation, which is required to 
introduce a round key iK for 0 31i   in which 31K  is used for post-whitening opera-

tion. In addition to that, there is a linear bitwise permutation layer and a non-linear 
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substitution layer based operation. The non-linear layer uses a single 4-bit S-box which 
is applied 16-times in parallel in each rounds. The algorithm requires mainly four func-
tions, which are: Key Scheduling, AddRoundKey, sboxlayer and p-layer [5]. 

3 An Architecture for PRESENT Block Cipher 

The proposed architecture for PRESENT block cipher is shown in Fig. 1. To save area 
and compute-time we have considered iterative type of architecture. Here, 64-bit 
datapath is chosen that provides optimal trade-off in terms of area, power and latency. 
The three main components of the architecture are: encryption engine, key scheduling 
and a controller. The key scheduling block takes 80-bit or 128-bit input key and gener-
ates thirty one round keys for the thirty one individual rounds of the cipher. 
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Fig. 1. Proposed architecture for the PRESENT cipher. 

The datapath of the architecture consists of a set of flip-flops, registers, multiplexers 
and XOR gates. The permutation/expansion is a simple bit-transposition, which re-
quires only simple wirings. The main building blocks of the architecture have been 
arranged in different subsections as described below. 

3.1 Datapath of PRESENT Architecture 

The 64-bit datapath based architecture as shown in the Fig. 1 is capable of performing 
the encryption operation with a key register. The architecture consists of a 64-bit En-
cryption Register, which is used to store the internal states of encryption operation. A 
64-bit state register is used to store the internal state alongwith an 80-bit register (Pro-
posed_80) or 128 bit key register (Proposed_128) for storing the intermediate round 
key. In addition to that one 64-bit and another 80-bit (or 128 bit) multiplexers are used 
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to switch the data between load phase and round computation phase. The datapath con-
tains sboxlayer (16 S-boxes) and one S-box (Proposed_80) or two S-boxes (Pro-
posed_128) for key scheduling. Alongwith this, one 64-bit XOR gate, 5-bit XOR gate 
and a 5-bit up-counter are also used.  

In the proposed architecture the inputs and outputs are registered. For this, 64-bit 
register is used to get the ciphertext at the output. By this the output gets synchronized 
with the last round. The latency can further be reduced by one more clock cycle if we 
do not want the output to be registered. However, the register is added to reduce the 
control logic and for synchronization of output with the last round. After completion of 
all the rounds, registered output is available after thirty three clock cycles. The main 
advantage of this architecture is that there is a reduction in the latency alongwith effi-
cient utilization of hardware resources. In the Fig. 1, round keys are computed on-the-
fly which are used for mixing with the state.  

Plaintext is loaded in the first clock cycle. In the next clock cycle multiplexer 
switches the data and then for next 31 cycles all intermediate states are computed. Data 
is available at the Encryption Register and is mixed with intermediate round key i.e., 
XORed with first 64-bit of round key. Further, the mixed state is passed to sboxlayer 
for state processing, which provides 64-bit data concurrently to p-layer and subse-
quently, it is passed to the Encryption Register through the multiplexer. In the last clock 
cycle, ciphertext is available at output register. Thus, here, a total of 1+31+1=33 clock 
cycles are required to encrypt a single block of 64-bit plaintext.  

3.2 Design of the sboxlayer 

To achieve high performance, high throughput and area efficient design of sboxlayer, 
numerous approaches can be considered. Three main deign approaches for sboxlayer 
are: look up table (LUT) based approach [7] and [12], RAM-based approach [9], and 
combinational logic based approach [7], [10]. The LUT based design offers a shorter 
critical path, however, there is some associated delay in high speed pipelined designs. 
Using RAM-based design a single S-box requires 16 4  bit size of memory. For a 
reasonably fast implementation of the encryption operation, on an average sixteen S-
boxes are required. Thus, the memory requirement raises to (16 4) 16  bits, that is, 

equal to 1-Kb, which is a sufficiently large amount of memory. To minimize the delay 
and area requirements another way is to design the sboxlayer circuits using combina-
tional logic optimization directly from its logic properties. In the proposed architecture 
the S-box(S) is realized by an area-optimized combinational logic circuit. 

3.3 Architecture for the Key Scheduling Process 

Key processing unit works on-the-fly with each round. A 64-bit register is used to store 
the round key, the first leftmost 64-bit of the key register is XORed with the interme-
diate state. At the first clock, input key is loaded to the key register as shown in Fig. 2. 
As per the Fig. 2(a), following three steps are performed for key scheduling with 80-bit 
key.  
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(a.) The output of the key register is rotated by 61 bits to the left, i.e., 

79 78 1 0 18 17 1 0 79 78 20 19..... ... ...k k k k k k k k k k k k  

(b.) First 4-bit is passed through S-box as, 

79 78 77 76 79 78 77 76[ ] [ ]k k k k S k k k k  

(c.) The value of counter is XORed with 5-bit of key, 

19 18 17 16 15 19 18 17 16 15 _k k k k k k k k k k round counter    
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Fig. 2. The key-scheduling process in the PRESENT cipher (a) with 80-bit input key (b) with 
128-bit input key. 

Similarly, with 128-bit key, the following three steps is performed for key scheduling 
as shown in Fig. 2(b). 

(a.) 127 126 1 0 66 65 1 0 127 126 68 67..... ... ...k k k k k k k k k k k k  

(b.) 127 126 125 124 127 126 125 124 123 122 121 120 123 122 121 120[ ] [ ] and [ ] [ ]k k k k S k k k k k k k k S k k k k   

(c.)  66 65 64 63 62 66 65 64 63 62 _k k k k k k k k k k round counter   

3.4 Controller for Encryption Operation 

A controller, as shown in Fig. 3 is designed to generate various required control signals 
for controlling the key generation process and the encryption engine. The controller 
generates four control signals which are en, enc_gen, sel and out_ready. There are three 
states in the FSM, in state S0 the counter is enabled through en signal and the plaintext 
with key is loaded when sel=‘0’. In state S1 the multiplexers are switched as sel gets 
logic ‘1’. The enc_gen signal is used to start the intermediate operations by enabling 
the encryption and key registers. The state remains in S1 until counter value reaches 31. 
Then, the state is switched to state S2 where counter is disabled through en=‘0’ and 
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out_ready signal becomes logic ‘1’. In the next cycle ciphertext is available through 
output register. 
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Fig. 3. FSM for the PRESENT cipher. 

4 Experimental Results and Discussions 

The proposed architectures are implemented in the VHDL language, and synthesized 
using Xilinx Design Suite 14.7 for the Virtex-5 XC5VFX70T-1-FF1136 FPGA device 
on Xilinx ML-507 platform. The device utilization is given in Table 1.  

Table 1. Device utilization summary for Xilinx Virtex-5 XC5VFX70T-1-FF1136 FPGA. 

Elements Available 
Resources 

Resource Utilization Resource Utilization 

Proposed_80 Proposed_128 
Slice LUTs 44800 218 266 
Slice Registers 44800 215 263 
Total Slices 11200 57 69 
Bonded IOBs 640 210 258 
Latency - 33 33 
Max.freq.(MHz) - 306.84 306.84 
Throughput (Mbps) - 595.08 595.08 
 

Here, the architecture Proposed_80 utilizes 0.51% FPGA slices and the architecture 
Proposed_128 utilizes 0.62% of FPGA slices. The IOBs utilization in the Proposed_80 
architecture is 32.81% and in Proposed_128 architecture it is 40.31%. Here, both the 
architectures have the latency of 33 clock cycles, runs at maximum clock frequency of 
306.84 MHz, consumes 23.75 mW power and provide throughput of 595.08 Mbps. 

To compare the architectures with the existing designs, the selected design metrics 
are: slice LUTs, registers and total number of consumed slices. Performance of the de-
sign is evaluated in terms of latency, maximum frequency and throughput. Throughput 
is computed using formula, (max. .  .  )throughput freq total no of bits latency  . To 

compare the work with the implementation of [11] and [12] which uses LUT-6 tech-
nology based FPGAs, the design have been synthesized for two different Xilinx devices 
namely, Spartan-6 XC6SLX16-3CSG324C [11] and Virtex-5 XC5VFX50 [12]. 
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Architectural comparisons between Proposed_80 and [11] is given in Table 2. It can 
be observed that in comparison to the implementation reported in [11], the proposed 
architecture requires 20.3% lower FPGA slices and the LUT-FF pair utilization is 96%. 
Alongwith the efficient utilization of the device resources, the performance of the ar-
chitecture has also improved.  In comparison to [11], the proposed architecture is able 
to work on an increased maximum frequency by 25.4%, and thus, there is gain in the 
throughput by 25.4% as per. 

Table 2. Comparison of resource utilization between proposed architecture and architecture [11]  
on Xilinx Spartan-6 XC6SLX16-3CSG324C FPGA device. 

Elements Available Resources Architecture (PRE) [11] Proposed_80 
Slice LUTs 9112 229 221 
Slice Registers 18224 136 224 
Total Slices 2278 74 59 
Latency - 33 33 
Max. freq.(MHz) - 221.63 278.00 
Throughput (Mbps) - 429.83 539.15 

 
In the second implementation, in line with [12], we have used 128-bit key size. The 

synthesis results of the implementations are shown in Table 3. As evident from the 
table, the proposed architecture requires 20.7% lesser FPGA slices in comparison to the 
architecture of [12]. Alongwith LUT-FF pair utilization by 96%, we also get improve-
ments in the performance. In the proposed architecture the latency has also reduced by 
27.7% and there is an increase of 22.3% in the maximum frequency. The decrease in 
latency and increase in the maximum frequency result in an overall increase of 69.1% 
in the throughput which is a significant improvement. 

Table 3. Comparison of resource utilization between proposed architecture and architecture [12]  
on Xilinx Virtex-5 XC5VFX50 FPGA device. 

Elements Available  
Resources 

Architecture  
(Iterative) [12] 

Proposed_128 

Slice LUTs 28800 285 271 
Slice Registers 28800 200 263 
Total Slices 7200 87 69 
Latency - 47 34 
Max. freq. (MHz) - 250.89 306.84 
Throughput (Mbps) - 341.64 577.58 
 
The Virtex-5 XC5VLX50 device as considered in [12] offers 220 I/O pins. For the 

purpose of comparison with [12], the128-bit key is brought into the datapath using two 
clock cycles, thus, incurring an increased latency of 1 clock. As per the iterative archi-
tecture of [12], 8-bit input has been supplied to 64-bit datapath at a time, thus requiring 
a total of 16 clock cycles to bring the 128-bit key. Apart from this, it requires 8 more 
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clock cycles for providing 64-bit ciphertext output. In comparison, the proposed archi-
tecture completes the processing from plaintext to ciphertext in 34 clock cycles. 

The design have also been compared with some other popular implementations using 
LUT-6 technology across different FPGA devices. The 64-bit implementations of 
PRESENT that are considered for comparison are: iterative architecture [10] denoted 
as Iterative:Tay; basic implementation (PRE) [11], denoted as PRE:Nino; the area-op-
timized design of [11] as PRE_O1:Nino; the serial implementation of [12] as Se-
rial:Hanely; and the iterative realization of [12] as Iterative:Hanely.  

A comparison of latency vs. number of slices consumed is shown in Fig. 4. In com-
parison to the latest implementation of PRE:Nino [11], a reduction in slice count is 
observed. Also, there is reduction in both the latency and number of used slices with 
respect to Iterative:Hanely [12]. The implementation of Iterative:Tay uses slightly less 
slices in comparison to the Proposed_128 however, there is an increase in the latency 
which can be observed in the Fig. 4.  

 

 

Fig. 4. Comparison of latency vs. consumed slices for different PRESENT implementations us-
ing LUT-6 based FPGA devices. 

Also, a comparison of throughput (Mbps) vs. number of occupied slices is shown in 
Fig. 5. It is found that in comparison to both PRE:Nino [11] and Iterative:Hanely [12], 
the proposed architecture requires lowest number of slices  and provides highest 
throughput (Mbps). 

 

 

Fig. 5. Comparison of throughput vs. consumed slices for different PRESENT implementations 
using LUT-6 based FPGA device. 
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5 Conclusion 

In this paper, we have presented two efficient VLSI architectures for PRESENT block 
cipher with key sizes of 80-bit and 128-bit. The proposed architectures efficiently uti-
lize the FPGA slices for providing data security under the resource-constrained envi-
ronment. The design has been modeled in VHDL language and the architectures have 
been synthesized in the Xilinx Virtex-5 XC5VFX70T-1-FF1136 FPGA device. The 
presented architectures consume only 57 and 69 FPGA slices respectively. In compar-
ison to other existing implementations, the proposed architectures shows improvement 
in terms of hardware resources and provide high throughput, which makes them ame-
nable for utilizing in lightweight cryptography applications.  
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