FPGA based Computing Displacement of Moving
Object in a Real Time Video

Kota Solomon Raju
DSG, CSIR- Central
Electronics Research

Institute (CSIR-CEERI),

Pilani, Rajasthan,
India -333031

+91-9460842188

Kota_solomonraju@yahoo.uk

Gargi Baruah

Tezpur University
Naapam, Assam,
India-784028

+91-9509774812
gargi369@gmail.com

ABSTRACT

This paper describes and focuses on the implementation of
computation of displacement of a moving object in a real time
video using EDK on FPGA platform. This will be used to
track the object where the object will be in the consecutive
frames. The entire displacement algorithm has been
implemented in the Avnet video processing board based on
Spartan 6 device S6LX150T. The Xilinx Spartan family has
the ability for partial reconfigurability and thus can be used in
real time video processing.

Keywords: FPGA, Xilinx, EDK, XPS, Bhattacharya
Coefficient, pixel values, tracking, real time video.

1. INTRODUCTION

The integration of real-time calculation of the displacement of
a moving object is a challenging task. This displacement
calculation serves a crucial point in tracking moving objects.
To date, many tracking methods [1] have been proposed such
as Kalman Filter[1], Extended Kalman Filter (EKF) [2],
Particle Filter [1] with varying characteristics, such as
tolerance to illumination and geometric variations and
computational complexity. These techniques [3], however,
still assume the availability of modest processing power,
memory, floating-point capabilities, etc., rendering them
inappropriate for constrained real-time implementations.

In fact image processing is difficult to achieve on a serial
processor.[3] because large parallel data set required to
represent the image and the complex operations that need to
be performed on the image[4]. If we consider video rates of
30 frames per second, a single operation performed on every
pixel of a 1280 by 720 color image (HDMI) equates to 663

2012 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an employee,
contractor or affiliate of the national government of India. As such, the
government of India retains a nonexclusive, royalty-free right to publish
or reproduce this article, or to allow others to do so, for Government

purposes only.
ICACCI '12, August 03 - 05 2012, CHENNAI, India
Copyright 2012 ACM 978-1-4503-1196-0/12/08…$10.00

Dept. of Electronics &
Communication Engg.

Palash Phukan
Dept. of Electronics &
Communication Engg.

Tezpur University
Naapam, Assam,
India-784028

+91-9435358807

phukan.palash@gmail.com

Manipati Rajesham
DSG, CSIR- Central
Electronics Research

Institute (CSIR-CEERI),

Pilani, Rajasthan,
India -333031

+91-7891400797

rajash.manipati@gmail.com

million operations per second. Many image processing
applications require that several operations be performed on
each pixel in the image resulting in an even large number of
operations per second. Thus the perfect alternative is to make
use of an FPGA [4]. Continual growth in the size and
functionality of FPGAs over recent years has resulted in an
increasing interest in their use for image processing
application.

The main advantage of using FPGAs for the implementation
of image processing applications is because their structure is
able to exploit spatial and temporal parallelism [5]. FPGA
implementations have the potential to be parallel using a
mixture of these two forms. For example, the FPGA could

be configured to partition the image and distribute the
resulting sections to multiple pipelines all of which could
process data concurrently. Such parallelization is subject to
the processing mode and hardware constraints of the system.
There is also the presence of Xilinx Embedded Development
Kit (EDK) tools can make it possible to implement a complete
digital system on a single FPGA using hardware/ software
design methods.. A developer could use one chip for different
tasks and switch between them during runtime. The Xilinx
Spartan family is very suitable for all these operations.

In this paper we propose a low cost FPGA system for
displacement calculation of a moving object in a real time
video. First, we present a high performance calculation
method using the Mean shift tracking algorithm [6] which,
while being robust to illumination and geometric variations,
entails a low computational load. This makes it suitable for
simple microprocessor as well as custom hardware
implementations. We then present an FPGA realization of this
method. In recent years, FPGAs have proven to be invaluable
in image processing applications [4] because they combine
the reconfigurability advantage of general purpose processors
with the parallel processing and speed advantages of custom
hardware. Our proposed FPGA based displacement
calculation combines very low logic and memory costs with
high processing rates. Here we have used Spartan 6 LX150T
for implementing our proposed method.

2. DISPLACEMENT CALCUTAION
METHOD

The problem of displacement calculation for moving objects
in various frames has been an active area of study for some
time. For it numerous methodologies exist with the help of
tracking methods such as point based, kernel based and
silhouette based [1]. For our computation we have used kernel
based mean shift method and the feature space is the colour
values i.e. RGB [7] The advantage of colour-based
computation methods is that, while computationally efficient,
they are generally robust to geometric transformations, such
scale, orientation and viewpoint changes, since such
transformations do not affect the colour, as well as to complex
backgrounds and illumination variations. In our previous
work, the detailed simulation has been shown in [9]

The first step is the quantization of the RGB space. If a
bin is used for all possible colours for a 24 bit frame, then
there will be 256*256*256= 16 million bins [8,9]. Thus the
feature space is quantized to 16*16*16=4096 bin values. We
have then chosen a target window of 160x80 of the 1280x720
frame and used the calculations described below

From the literature [6], [7],[9] object model Probability
Density Function is given by

Qu=CXi; Clk(l1xi[[*)a(b(xi) — w) (6Y)
Target model [6],[7],[9] for target centred at y is given by
py)~Ch I | (| 52 12) ab(yi) - w) @

The new position y1 is given by applying Mean Shift which
goes as

2
)

’L’"u -
h

Zimg ¥ £ Wy 5 g(

" s, gz

©)

Now the similarity function [7] defines a distance among
target model and candidates. When similarity increases
Bhattacharya coefficient increases.

The displacement [8] between two discrete distributions as

dy)y=Jy1—plp(¥).q])

But this displacement decreases when similarity increases.
For further reference refer literature [9].

Figure 1 shows the flowchart for the of the software code
implemented in EDK for displacement calculation. The full
flow of this displacement flowchart can be obtained from
Ref.[9].

Dispacement

function
curPixelWeight =kernel
derivatives *weights

wx_div=wx_su
l m/weight_sum;

> &
weight_sum = weight_sum wy_div=wy_su
+ curPixelWeight m/weight_sum;

. I

Wxc=x co-ordinate*]
curPixelWeight dx =floor(wx_div);
AND dy =floor (wy_div)
wyc=y co-ordinate
*curPixelWeight
l A 4
Stop
WX_SUMmM = WX_Sum + WXC;
&

Wy_Sum = wy_sum + wyc

Figure 1. Flowchart for displacement calculation

3. FPGA-BASED SYSTEM

The top level organization of the FPGA system which
implements the displacement calculation method described in
section 2 is shown in Figure 2 and 3. Thus, at the top level,
the proposed FPGA-based system is a system consisting of
six stages, namely video capturing, memory partitioning,
writing the video in VFBC, processing this active data,
transferring this processed data to the read VFBC memory
and finally displaying it.

Video_data_in Video_data_out

J0MHz_ | VFBC MPMC | VFBC

vdma_wd_clk wdma_rd_data 75 MHZ
vdma_wd_write
wdma_wd_data
fsync_o w dma:w d: data_be Vsync/hsync VIDEO GENERATE
VIDEO DETECT Active-Video Timing Signals
active_video
_] . FlipFlo
FlipFlops 3| FlipFlops FlipFlops > Registers —>} Sy
- s
video_data - .
Video_data dvi_de_o/dvi_redo
Vsync/hsync dvi_green_o
Active_video_in XSVI video_out dvi_vsync/hsync_o
Video_data_in 40MHZ dviblieo |75 MHz
Vblank/hblank -
FMCIMAGEOV
DVI-D output
OV715 Image Sensor _ 27MHz I_> (CON400)
Input(CON301)

Figure 2 Video Signal Detection & Generation block diagram

The video input from image sensor OV9715 source enters the
Camera Input PCORE [10]. This PCORE decodes the BT656
codes with the help of CCIR656 to generate synchronization
signals and formats the video as an XSVI bus interface. The
Video Detect PCORE monitors the VSYNC and
ACTIVE_VIDEO signals to determine the dimensions of the
active video streaming through the FPGA. The Video DMA
PCOREs with the Video Frame Buffer Controller (VFBC)
[10] interfaces on the Multi-Port Memory Controller (MPMC)
and perform the actual transfer of active video data to/from
external memory.

In order to process the video data from the data it is very
important for the read and the write frame buffer memory
address to be different. Hence memory partitioning is done
and after the extraction of RGB values, the video data is then
passed on to the read frame buffer memory address in DDR.

From the Read VFBC the video data goes to the Video
Generate PCORE which again generates timing signals
required for an XSVI bus. It is then forwarded to the DVI
output PCORE. The DVI Output PCORE takes an XSVI bus
interface as input and optionally drives the pins of the DVI
output interface. This output to the FMC connector will only
be driven once the FMCIMAGEOV module has properly
been identified.

Processor
System
Reset

Clock
Generator

GPIO DIP
SWITCHES/
GPIO LEDS/

GPIO Push Buttons

I

L T
12C 12C

controller controller
XPS 12C XPS 12C

MPMC

B Video
F G ‘: STAT ::# GAMMA# Detec HVDMA

0Own<
0Own<

Camera

Input % SPC BC CFA

Video Input Clock domain 720p30(75MHz)
720p30(40MHz)

DVI Transmitter
Image Sensor SPARTAN 6LX150T FMC
Input Development Kit IMAGEOV OUTPUT

Figure 3 Camera Frame Buffer — Video Pipeline

Video output
Clock Domain

The video resolution used is 1280x720P @ 30Hz .These
resolutions are configured by the embedded processor (Micro

Blaze) and can be modified to support other resolutions
(limited by the image sensor used).

Thus the software and the hardware part is merged using
EDK, and bit stream is generated which is dumped into the
FPGA .Spartan 6 LX110T with speed grade -3. Figure 4
shows the board and the terminals used for this process.

| Camera based on Micron MT9V022 Digtal CMOS image sensor(0V9715) |

DVI/HDMI Output DVI/HDMI Input JTAG Port

FMCIMAGEOV
in position JX2
for DVI output
video interface

FMC
IMAGEQV in
position JX1
for camera
input video
interface

~
]

Figure 4: Call out diagram of Spartan 6 1\VK board

4. EXPERIMENTAL RESULTS

The architecture of the displacement computation method is
shown in Figure 4

Camera

Interface of Camera with
FPGA(FMC IMAGE OV)

§

ppbr I\ SPARTAN6 ———
N—/

FPGA HyperTerminal

1l

Interface of DVI output with
FPGA(FMC IMAGE OV)

1l

DVI Monitor
(Display)

Figure 5: Architecture of the Displacement Computation
Block

After the base platform is created and the IPs are added

(according to the architecture shown in Figure 4,)using EDK
12.2, a block diagram of the embedded system is generated in o
EDK which is shown in the figure 5.

1200+

1000+

800

600

Histogram

400

Bayer i 200 L 7
T conversion IP ‘
, o L L kb, ba]
0 500 1000 1500 2000 2500 3000 3500 4000 4500
i = I BIN VALUES

‘‘‘‘ Colour .

correcton Figure 8: Histogram of a 160 X 80 target window of
1280X 720 frame (3" frame)

Stuck pixel
correction IP Camera

' Input P Figure 7 and 8 shows the histogram plot of the 160x90 target
ko Dt F — — window of the first 3 consecutive 1280x720 frames os a real
o—— B = time video. The data was obtained in real time.

s
IZCcontrollerIP Clock JF_” i: =_~_ =— =:-_—_I—.-

generator

Figure 6: Generated Block diagram after implementation.

fla.py)]>

The data that was obtained from the output in HyperTerminal
window using the EDK tool were used in Matlab 7.8.0
(R2009a) after which the following graphs were obtained.

Figure 9: Plot of the similarity function,

The data obtained was calculated for histogram and then
calculated for the similarity function for the equation.(5)

Histogram

BIN VALUES

Figure 7: Histogram of a 160 X 80 target window of
1280X720 frame (1st frame)

&
n

Displacerment.

s 5
FRAMES 2>

Figure 10: Displacement of the target object in 10
Consecutive frames

Finally, the displacement is calculated from the data obtained
in the HyperTerminal window and the equation (6) and is
shown in figure 10.

Table: 1 The table shows the amount of resources used and
its percentage utilization.

Device Utilization Summary (estimated values)

Logic Utilization Used Available | Utilization
Number of Slice Registers 11,437 184,304 6%
Number of Slice LUTs 10980 92,152 11%
Number used as memory 846 21,680 3%
Number of bonded 10Bs 95 386 23%
Number of 10 32 31%
BUFG/BUFGCTRLs
Number of DSP48Es 18 128 4%

The earlier work for real time displacement calculation was
done in MATLAB [11],[12]. But here we have developed a
code in EDK in C for developing an embedded system. This
work will further lead to make a reconfigurable embedded
system by applying the concepts of hardware-software co-
design, reconfiguration of the hardware modules. Decision for
which IPs should be used for parallel processing (hardware
blocks) and which should be left as sequential (software
flow). The latency factor will decide this software/ hardware
partition. We have implemented this code using all the RGB
channels whereas in previous works they have used either one
colour channel or converted RGB images into 8 bit grayscale
images. Also tracking in real time is a tedious process in
software. Here our target is to develop an embedded system
for real time moving objects.

6. CONCLUSION AND FUTURE WORK

In this paper we have explored the use of variable kernels to
enhance a weighted histogram and then compute the
displacement of an object in the video frames which can be
used for various tracking and other video processing
algorithms. The main advantage is that a system has been
developed which is not only accurate but its computation is
very high compared to other software platforms since in EDK
100% bit stream is generated. Also the use of resources is
very less.

Future work is currently underway to extend our testbed
platform for tracking of objects in real time by developing
new hardware for various image processing algorithms,
complementing our motion-tracking algorithm by adding
further improved calculations and developing custom IPs for
parallel processing.

ACKNOWLEDGMENT

The work reported in this paper is a part funded by CSIR-
Supra Institutional Project.(SIP 21). We would like to thank
Dr. Chandra Shekhar, Director CSIR-CEERI, Pilani, Dr. P.
Bhanu Prasad, Chief Scientist, DSG Group CSIR-
CEERI,Pilani, Mr. Manoj Pandey PhD Scholar and Mr.
Vaibhawa Mishra, QHF for their help and support.

REFERENCES

[1] Alper Yilmaz, Omar Javed, Mubarak Shah,” Object
Tracking- A Survey”, ACM Computing Surveys, Vol.
38, No. 4, Article 13, pp.145-190, December 2006

[2] Welch & Bishop, “An Introduction to the Kalman
Filter” UNC-Chapel Hill, TR 95-041, July 24, 2006

[3] M. Sanjeev Arulampalam, Simon Maskell, Neil Gordon,
and Tim,”A Tutorial on Particle Filters for Online
Nonlinear/Non-Gaussian Bayesian Tracking” IEEE
transactions on signal processing, vol. 50, no. 2, pp 55-
70, February 2002.

[4] Chi-Jeng Chang, Pei-Yung Hsiao, Zen-Yi Huang
‘Integrated Operation of Image Capturing and
Processing in FPGA’, 1JCSNS International Journal of
Computer Science and Network Security, VOL.6 No.1A,
pp 173-179. (2006).

[5] Crookes D., Benkrid K., Bouridane A., Alotaibi K., and
BenkridA.(2000), ‘Design and implementation of a
high level programming environment for FPGA-
based image processing’, Vision, Image and Signal
Processing, IEE Proceedings, vol. 147, Issue: 4 pp. 377 -
384, Aug, 2000.

[6] D. Comaniciu, V. Ramesh, P. Meer, “Kernel-basedobject
tracking,” IEEE Trans. On Pattern Analysis and
Machine Intelligence, pp. 564-575, May 2003K.
Fukunaga, L.D. Hostetler, “The Estimation of the
Gradient of a Density Function, with applications in
Pattern Recognition”, IEEETransactions on
Information Theory, Vol. 21, pp. 32-40. January 1975

[7] D. Comaniciu and P. Meer, “Mean shift: A robust
approach toward feature space analysis,” IEEE Trans.
Pattern Anal. Machine Intel., vol. 24, no. 5, pp. 603-619,
2002.

[8] Kota Solomon Raju, Gargi Baruah, Manipati Rajesham
and Palash Phukan, "Computing Displacement of
Moving Object of a Real time Video Using EDK"
Proc International Conference on Computing,
Communications, Systems And Applications(ICCCSA)
Hyderabad, ,pp 76-79; ISBN: 978-81-921580-8-2;30"-
31% March 2012

9]

[10]

[11]

[12]

Kota Solomon Raju, Gargi Baruah, Manipati Rajesham
and Palash Phukan, "Histogram Calculation of Real
time video using EDK.," Proc. International
Conference on Electronics and Communication
Engineering(ICECE) Chandigarh,, pp.45-48; IPM PVT.
LTD, ISBN:978-93-81693-46-9. 17th - 18th March

Spartan-6 Industrial Video Processing Kit — EDK
Reference Design Tutorial,
www.em.avnet.com/spartanévideo

Madhurima, Madhulika, “ Object tracking in a video
sequence using Mean-Shift Based Approach: An
Implementation using MATLAB7” | IJCEM
International Journal of Computational Engineering &
Management, Vol. 11, January 2011

D. Comaniciu, V. Ramesh, and P. Meer, “Real-time
tracking of non-rigid objects using mean shift,”
inProc. IEEE Conf. on Computer Vision and Pattern
Recognition, pp 407-418, January 2003.Proc. |EEE
Conf. on Computer Vision and Pattern Recognition, pp
407-418, January 2003

