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Abstract—In this paper we describe an intuitive model for 
accurate and efficient detection of abandoned objects. The 
system is built on the backbone of the Gaussian Mixture Model 
for background subtraction. We apply a simple and robust 
method for shadow detection . Next, detection of stable blobs is 
carried out using Mathew et al’s method, and an important 
modification is suggested that is resistant to temporary 
occlusions, and removes unnecessary parameters from the 
model. Changes to the background itself are identified via a 
'ghost' removal procedure that can distinguish between true 
and removed objects. Results of testing the model are 
presented with conclusions. 
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I. INTRODUCTION 
Detecting abandoned objects is an area of active research 

in video surveillance. Abandoned objects pose a security 
risk in crowded public places. Smart surveillance systems 
such as the one presented in this paper can be used to alert 
security officers monitoring live video to potentially 
dangerous situations. 

Most existing approaches focus on tracking multiple 
objects in a scene. In [1-4], a low-level stage of foreground 
segmentation is followed by a stage of object tracking. Such 
an approach is not only computationally costly but also very 
challenging in a complex environment with a large number 
of occlusions. 

Moreover, in [3], Ferrando et al define an abandoned 
object as a static ‘non-human’ blob following a split from a 
composite ‘human + object’ blob. In [4] Bhargava et al 
determine the owner of the object by backtracking to the 
drop-off point and try to locate him in the scene. In this 
paper, however, we simply define an abandoned object to be 
any stationary object that has introduced in the scene after 
the system is started. 

A comprehensive review of many background 
subtraction based foreground static object detection methods 
is presented in [5].The Mixture of Gaussians method 
proposed by Stauffer and Grimson in [6] has proven to be 
highly successful in modeling complex backgrounds. We use 
the information inherent in this model to detect stable 
objects. Our work in this respect has largely been inspired by 
the work of Mathew et al in [7]. 

II. SYSTEM OVERVIEW 
Fig 1. shows the system flowchart. The system has four 
main modules:  (a) background subtraction; (b) shadow 

removal; (c) static region detection; (d) static object type 
detection (abandoned/ removed). 

The system is based on a Mixture of Gaussians 
background subtraction scheme. First background 
subtraction is performed to detect any new object that may 
have entered the scene. After that we determine which 
objects remain stationary for a certain number of frames. 
The final module differentiates between removed and 
abandoned objects. The system notifies the user of an 
abandoned object by raising an alarm. 

The following sections will elaborate on each of these 
steps. 

III. BACKGROUND SUBTRACTION 
The background subtraction method in [6] uses Gaussian 

Mixture Models (GMM), which are commonly used in 
machine learning and classification. A GMM is a mixture 
probability density function (pdf) where the GMM itself is a 
linear combination of K Gaussian pdfs. Details of the model 
are presented in the following sections. 

A. Basic Equations 
A mixture of K Gaussians is used to model the time 

series of values observed at a particular pixel. The 
probability of occurrence of the current pixel value is given 
by 

ܲሺܼሻ ൌ ∑ ݓ

ୀଵ ܰሺߤ௧, Σ௧, ܼሻ   (1)

ܰ  is the Gaussian probability density function whose 
mean vector is ߤ and covariance isΣ. 

 . = 1ݓ is the weight of the ݅௧ℎ Gaussian such that Σݓ
The covariance matrix is assumed to be of the form Σ = σଶI 
for computational reasons. 

B. Parameter Updates 
The new pixel value ࢚ࢆ  is checked against each 

Gaussian. A Gaussian is labeled as matched if 
ԡZ െ µ୦ԡ ൏ ݀σ୦  (2)

Then its parameters may be updated as follows: 
,௧ݓ ൌ ሺ1 െ ሻߙ כ ,௧ିଵݓ  ߙ  כ  ,௧ܯ (3)
௧ߤ ൌ ሺ1 െ ሻߩ כ ௧ିଵߤ  ߩ כ ܼ௧  (4)
௧ߪ

ଶ ൌ ሺ1 െ ሻߩ כ ௧ିଵߪ
ଶ  

ߩ כ ሺܼ௧ െ ௧ሻ்ߤ כ ሺܼ௧ െ  ௧ሻߤ
(5)

ߩ ൌ ߙ כ ܰሺߤ௧ିଵ, Σ௧ିଵ, ܼ௧ሻ  (6)
Where α is the learning rate for the weights. 
If a Gaussian is labeled as unmatched only its weight is 

decreased as  
w୧,୲ ൌ ሺ1 െ αሻ כ w୧,୲ିଵ  (7)
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Figure 7.  Processing of abandoned and removed objects. 
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