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Abstract. Both Gabor filters and Support Vector Machines (SVMs)
are widely used in computer vision tasks for feature extraction and clas-
sification respectively. However the method is usually plagued by the
problems of high computational complexity and memory usage owing to
the high dimensionality of the Gabor filter responses. There were meth-
ods proposed to mitigate this problem by truncating or finding a gist
of the responses but such approaches also lead to loss of information.
Ashraf et al. gave a reinterpretation of the whole method and proposed
a way to eliminate the need for such approximations. But they only give
an analysis for linear SVM. This paper extends their work and provides
analysis for non-linear kernels within the same framework. The class of
non-linear kernels that are compatible with this framework are derived
and experimental results on the facial expression recognition task are
reported.
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1 Introduction

Gabor filters have been used for feature extraction in computer vision for a long
time now [1][2][3]. Their similarity to the receptive fields of mammalian cortical
simple cells [4], provides researchers an extra inspiration for using them for
representation of visual data. They are often used in conjunction with Support
Vector Machine (SVM) classifiers for computer vision tasks [5][6][7][8]. SVMs
are maximum margin classifiers which use sample data to construct a hyper-
plane classifier in a higher dimensional mapping of the original feature space.
The mapping can be linear or nonlinear depending on the type of kernel used.

One of the key problems with the use of Gabor filters as feature extractors is
the high computational complexity and memory usage, both during training of
the classifier and during prediction. To counter this problem, often only a gist
of the original concatenated Gabor response is used. The gist can be computed
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by using some kind of averaging or a feature selection algorithm like AdaBoost.
In [9] Ashraf et al. proposed a method to circumvent the need for such approxi-
mations when using SVMs. It involves the use of some mathematical properties
of the Fourier transform and the reinterpretation of the working of the SVMs
when used in conjunction with the Gabor filters as maximizing the margin in
a weighted Euclidian space. But [9] provides an analysis only for linear support
vector machine.

In this paper, we provide an analysis of the extension of the method proposed
in [9] to non-linear kernels. We find out the class of non-kernels that can be used
in the same framework and to same effect towards reducing computation and
memory usage. In congruence with [9] we chose the platform of facial expression
recognition for our experiments.

The rest of the paper is organized as follows. Section 2 reviews the application
of Gabor filters and SVMs to computer vision tasks and the reinterpretation
provided by [9]. Section 3 analyses the extension of the method of Ashraf et al.
to non-linear kernels. Experimental results are described in Sect. 4. Finally, the
conclusions from the study have been drawn in Sect. 5.

2 Classification using Gabor filtering and SVM

2.1 Application of Gabor Filter

The Gabor filter is composed of two components, a complex sinusoidal car-
rier and a Gaussian envelope. The Gabor function can be written as gω,θ =
1

2πσ exp (jωx′) exp
(
−x

′2+y′2

2σ2

)
, where x′, y′ are the spatial coordinates, θ is the

orientation of the Gabor filter and ω is the frequency of the complex sinusoid
and σ is the standard deviation of the Gaussian. By varying, ω and θ, we can
generate a set of 2D Gabor filters of different scales and orientations. A 2D Ga-
bor filter can be represented as a vectorization of the matrix gω,θ with elements,
{gω,θ(x, y)}. The response of an image to this filter in Fourier domain can be
calculated as

r̂ = x̂ ◦ ĝω,θ . (1)

Where, x̂ is the vectorized image matrix in Fourier domain and r̂ is the
response in Fourier domain. Now the complete response of the image vector
to the entire set of Gabor filters, in spatial domain can be represented in a
concatenated form as,

z = [r1
T , r2

T , . . . , rM
T ]T . (2)

2.2 Efficient Training of Gabor–SVM without Information Loss

SVMs are binary classifiers, popular for their ability to handle high dimensional
data and is widely used in image classification. Consider a training data set
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{(z1, y1), (z2, y2), . . . , (zN , yN )}, where zi are the training samples and yi ∈
{−1,+1} are the labels to which each sample can be assigned to. The SVM tries
to build a hyperplane,wTz−b = 0 that best separates the data points (by widest
margin). It does so by minimizing the objective function minw,b,ξi

1
2 w

Tw +
C
∑
i ξi subject to ξi > 0, yi(w

Tz − b) ≥ 1− ξi, ∀i.
Here ξi are slack variables that allow misclassification for data that are not

linearly separable and C is the penalizing constant. The problem of optimization
is simplified by using its dual representation:

max
0≤αi≤C

∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyjzi
Tzj , (3)

subject to
∑
i αiyi = 0.

In our case, zi is the concatenated response of the image xi on a set of
Gabor filters. Using (1), (2) and Parseval’s theorem[10] the dot product of con-
catenated response vectors zi

Tzj can be expressed as product of matrices of
smaller dimensions[9]:

zi
Tzj = x̂i

TS x̂j . (4)

where,

S =
∑
m

diag(ĝm)T diag(ĝm) (5)

The optimization problem, thus, becomes

max
0≤αi≤C

∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyjx̂i
TS x̂j . (6)

subject to
∑
i

αiyi = 0 .

Which is same as training with the vectors (
√
Sx̂i). Though there is one

problem that seems to have crept in due to the use of Fourier vectors. The SVM
is to be trained with complex vectors, while most SVM packages support real
vectors only. To tackle this problem the vectors x̂i of N dimension can be repre-
sented as a real vector [<(x̂i) =(x̂i)] of 2N dimension [9] and the optimization
problem in (6) can be solved.

2.3 Testing without Filtering

The classification of a test image x is theoretically based on its concatenated
response z, according to sign(wTz − b). The outcome of training SVM is the
bias b and αi values that enable us to calculate:

wTz =

(∑
i

αiyi(
√
Sx̂i)

T

)
√
Sx̂ . (7)
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If we let W = S (
∑
i αiyix̂i) then we have wTz = W T x̂. This requires the

test image to be first transformed into Fourier domain. However, the step can
be skipped by using Parseval’s Theorem:

W T x̂ = W̃ Tx (8)

where ũ represents inverse 2D fourier transform of the vector u .

The value of W̃ can be pre-computed and stored. The classification can now
be performed by

class = sign(W̃ Tx− b) (9)

As a result, for testing, we do not need to compute the Fourier transform
of the image and the classification can be performed on raw image. Thus, the
testing time can be significantly reduced.

3 Extension to Non-Linear SVM

For a non-linear SVM a transformation z → φ(z) is assumed and φ(zi)
Tφ(zj)

is replaced with K(zi, zj), where K is the Kernel function. The optimization
problem for non-linear SVM is

max
0≤αi≤C

∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyjK(zi, zj) . (10)

subject to
∑
i

αiyi = 0 .

The technique that has been used in the linear case makes use of the property
of the dot product zi

T zj . We cannot use the improvements in training and
testing suggested for linear case if the objective function of the optimization
step is dependent on zi and zj in any other way. So, we need to select such a
kernel which is a function of the dot product of its variables:

K(u,v) = φ(u)Tφ(v) = f(uTv) . (11)

Due to the property of the Kernel function that we have assumed in (11) and
the result of (4), we can write:

K(zi, zj) = f(zi
Tzj) = f((

√
Sx̂i)

T (
√
Sx̂i)) = K(

√
Sx̂i,

√
Sx̂j) . (12)

Thus, once again, training with zi becomes same as training with the vectors
(
√
Sx̂i). Using the same technique of transforming from complex vector to real

vector used in the linear case, we can get the corresponding values of αi in (10)
and do the classification.

The classification is based on sign(wTφ(z)− b). Now, wTφ(z) can be eval-
uated as follows:



Efficient Application of Gabor Filters with SVM 5

wTφ(z) =
∑
i

αiyiK(zi, z)

=
∑
i

αiyif((
√
Sx̂i)

T (
√
Sx̂))

=
∑
i

αiyif((Sx̂i)
T x̂) . (13)

To reduce computational cost during testing, a method similar to the linear
case can be employed to test without filtering the test image, i.e., without trans-
forming the image in frequency domain. We make use of Parseval’s Theorem
that leads to

(Sx̂i)
T x̂ = (̃Sx̂i)

T

x . (14)

Using this in (13) yields

wTφ(z) =
∑
i

αiyif((̃Sx̂i)
T

x) . (15)

Note that the values (̃Sx̂i) can be precalculated and stored for all the support
vectors during training. So, the testing involves, only taking their dot products
with the test image x.

4 RBF Kernels

A radial basis function (RBF) is a function of two vectors, which depends on
only the distance between them, i.e., K(u,v) = f(‖u−v‖) . A very widely used

RBF as SVM Kernel is the Gaussian Kernel K(u,v) = exp
(
‖u−v‖
σ

)
. Here, we

show that any RBF kernel can be used while training with transformed vectors
as suggested in Sect. 2.2

‖zi − zj‖ =
√

(zi − zj)T (zi − zj)

=
√
ziTzi − ziTzj − zjTzi + zjTzj

=

√
(
√
Sx̂i −

√
Sx̂i)T (

√
Sx̂i −

√
Sx̂i)

(Using equation 4)

= ‖
√
Sx̂i −

√
Sx̂i‖ . (16)

Again, we find that for any radial basis function, including Gaussian RBF,
training with zi is equivalent to training with the vectors (

√
Sx̂i). And as the

size of the matrix S does not depend on the number of Gabor filters being used,
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it becomes possible to use as many Gabor filters as desired without increasing
the amount of storage space required. However, as the RBF kernels do not satisfy
equation (11), its not possible to do classification without filtering in this case. So,
reduction in memory usage is still possible with RBF kernels, though reduction
in computations is not obtained.

5 Results

We conducted our experiments on a combination of Cohn–Kanade FACS–Coded
Facial Expression Database and JAFFE Database for expression recognition.
The Cohn–Kanade database consists of about 500 video sequences of 100 sub-
jects, while JAFFE database consists of 213 images of 10 subjects. Out of these,
1455 face images were extracted, in which eight expressions were identified: neu-
tral, anger, contempt, disgust, fear, happiness, sadness and surprise. The face
area of each of these images were cropped and resized to 100× 100 image.

The implementaion was done using the SVM package of MATLAB from Bio–
Informatics Toolbox. For each expression we learn a one vs all binary classifier
as explained in Sect. 3, using Gabor filters of various sizes. The results of k-
fold cross validation, with 32× 32 Gabor filters are given in Table 1. This table
shows the results of linear, MLP, polynomial and Gaussian RBF kernel after
normalization or scaling the data to 0 mean and 1 standard deviation (which is
default in MATLAB).

Table 1. Accuracies of one vs all classifiers, with normalization

Emotion Linear Kernel MLP Kernel Polynomial Kernel Gaussian RBF

Neutral 60.63 60.18 41.82 63.29
Anger 90.95 91.86 91.82 91.86
Contempt 95.93 95.02 95.45 95.39
Disgust 92.76 91.86 91.82 92.59
Fear 94.09 94.57 94.55 94.30
Happiness 91.36 87.33 88.07 88.25
Sadness 94.14 94.14 94.55 94.30
Surprise 89.59 86.94 87.16 90.14

Average 88.68 87.74 85.65 88.77

However, note that if we wish to test without filtering we have to use (14),
which cannot be applied directly if we have used normalization during training.
So, we also did some experiments without normalization (setting ’AutoScale’
to false) for linear and MLP kernel. The results are shown in Table 2. We ob-
serve that there is no significant difference in with and without normalization.
Also, kernels other than linear gave comparable results. In fact, Gaussian kernel
produced better accuracy than the linear kernel.
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Table 2. Accuracies of one vs all classifiers, without normalization

Emotion Linear Kernel MLP Kernel Gaussian RBF

Neutral 72.07 57.47 74.50
Anger 90.45 80.54 90.96
Contempt 95.02 95.02 96.20
Disgust 92.31 91.86 92.95
Fear 95.00 89.64 94.48
Happiness 91.40 87.78 92.04
Sadness 94.57 92.31 94.58
Surprise 92.76 86.88 93.22

Average 90.45 85.19 91.12

For multiclass classification, instead of using the scores of the binary SVMs
directly, we used the method proposed in [11]. The method maps the output of
a binary SVM classifier, β into a posterior probability destribution P (C1|β):

P (C1|β) =
1

1 + exp (Aβ +B)
. (17)

Where A and B are parametes which can be learnt from the training data.
For each of the binary classification we learnt the parameters A and B and used
them to convert the output scores into probabilities of the image belonging to
that class. The image was labeled to the class which had the highest probability.
Implementation of this technique gave an overall error of 35.64 %.

6 Conclusion

In this paper, we have provided an analysis of the extension of the method
proposed by Ashraf et al. to non-linear kernels. We observe that the same method
can be applied to the class of non-linear kernels for which the kernel is a function
of the inner product. Polynomial kernels, Multi-layer perceptron (MLP) kernels
are some examples which fall into this class. We ran experiments for the task of
facial expression recognition using the polynomial and MLP kernels apart from
the linear kernel. The systems showed considerable improvement in memory
usage and computation, albeit, slight decrease in accuracy compared to that
of the linear kernel. This may be due to the comparatively small size of the
dataset used in the experiment. Gaussian Kernel on the other hand, performed
consistently better than linear kernel. With a more densely populated training
dataset, the non-linear SVMs should be expected to give better result due to
their higher model capacity. One of the key aspects of this work is that it exploits
properties of specific non-linear kernels to enable more computationally efficient
and memory efficient implementations of Gabor filters with SVM.
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